Advertisement

The Murine Intravaginal HSV-2 Challenge Model for Investigation of DNA Vaccines

  • Joshua O. Marshak
  • Lichun Dong
  • David M. KoelleEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2060)

Abstract

DNA vaccines have been licensed in veterinary medicine and have promise for humans. This format is relatively immunogenic in mice and guinea pigs, the two principle HSV-2 animal models, permitting rapid assessment of vectors, antigens, adjuvants, and delivery systems. Limitations include the relatively poor immunogenicity of naked DNA in humans and the profound differences in HSV-2 pathogenesis between host species. Herein, we detail lessons learned investigating candidate DNA vaccines in the progesterone-primed female mouse vaginal model of HSV-2 infection as a guide to investigators in the field.

Key words

Herpes simplex virus Animal model DNA vaccine Antibody Polymerase chain reaction Latency Dorsal root ganglia 

References

  1. 1.
    Tronstein E, Johnston C, Huang ML, Selke S, Magaret A, Warren T, Corey L, Wald A (2011) Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infection. JAMA 305:1441–1449CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kask AS, Chen X, Marshak JO, Dong L, Saracino M, Chen D, Jarrahian C, Kendall MA, Koelle DM (2010) DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge. Vaccine 28:7483–7491CrossRefPubMedGoogle Scholar
  3. 3.
    Feldman LT, Ellison AR, Voytek CC, Yang L, Krause P, Margolis TP (2002) Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A 99:978–983CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Freeman ML, Sheridan BS, Bonneau RH, Hendricks RL (2007) Psychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections. J Immunol 179:322–328CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cliffe AR, Wilson AC (2017) Restarting lytic gene transcription at the onset of herpes simplex virus reactivation. J Virol 91:e01419-16CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Roy S, Coulon PG, Srivastava R, Vahed H, Kim GJ, Walia SS, Yamada T, Fouladi MA, Ly VT, BenMohamed L (2018) Blockade of LAG-3 immune checkpoint combined with therapeutic vaccination restore the function of tissue-resident anti-viral CD8(+) T cells and protect against recurrent ocular herpes simplex infection and disease. Front Immunol 9:2922CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Johnston C, Koelle DM, Wald A (2011) HSV-2: in pursuit of a vaccine. J Clin Invest 121:4600–4609CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Parr MB, Kepple L, McDermott MR, Drew MD, Bozzola JJ, Parr EL (1994) A mouse model for studies of mucosal immunity to vaginal infection by herpes simplex virus type 2. Lab Invest 70:369–380PubMedGoogle Scholar
  9. 9.
    Linehan MM, Richman S, Krummenacher C, Eisenberg RJ, Cohen GH, Iwasaki A (2004) In vivo role of nectin-1 in entry of herpes simplex virus type 1 (HSV-1) and HSV-2 through the vaginal mucosa. J Virol 78:2530–2536CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cherpes TL, Busch JL, Sheridan BS, Harvey SA, Hendricks RL (2008) Medroxyprogesterone acetate inhibits CD8+ T cell viral-specific effector function and induces herpes simplex virus type 1 reactivation. J Immunol 181:969–975CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lopez C (1975) Genetics of natural resistance to herpes virus infections in mice. Nature 258:1352–1353CrossRefGoogle Scholar
  12. 12.
    St Leger AJ, Peters B, Sidney J, Sette A, Hendricks RL (2011) Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice. J Immunol 186:3927–3933CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Treat BR, Bidula SM, Ramachandran S, St Leger AJ, Hendricks RL, Kinchington PR (2017) Influence of an immunodominant herpes simplex virus type 1 CD8+ T cell epitope on the target hierarchy and function of subdominant CD8+ T cells. PLoS Pathog 13:e1006732CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, Carbone FR, Mueller SN (2011) Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477:216–219CrossRefGoogle Scholar
  15. 15.
    Muller WJ, Dong L, Vilalta A, Byrd B, Wilhelm KM, McClurkan CL, Margalith M, Liu C, Kaslow D, Sidney J, Sette A, Koelle DM (2009) Herpes simplex virus type 2 tegument proteins contain subdominant T-cell epitopes detectable in BALB/c mice after DNA immunization and infection. J Gen Virol 90:1153–1163CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shlapobersky M, Marshak JO, Dong L, Huang ML, Wei Q, Chu A, Rolland A, Sullivan S, Koelle DM (2012) Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. J Gen Virol 93:1305–1315CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sin JI, Kim JJ, Zhang D, Weiner DB (2001) Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum Gene Ther 12:1091–1102CrossRefPubMedGoogle Scholar
  18. 18.
    Chen X, Kask AS, Crichton ML, McNeilly C, Yukiko S, Dong L, Marshak JO, Jarrahian C, Fernando GJ, Chen D, Koelle DM, Kendall MA (2010) Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release 148:327CrossRefPubMedGoogle Scholar
  19. 19.
    Dutton JL, Woo WP, Chandra J, Xu Y, Li B, Finlayson N, Griffin P, Frazer IH (2016) An escalating dose study to assess the safety, tolerability and immunogenicity of a Herpes Simplex Virus DNA vaccine, COR-1. Hum Vaccin Immunother 12:3079–3088CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dutton JL, Li B, Woo W-P, Marshak JO, Xu Y, Huang M-L, Dong L, Frazer IH, Koelle DM (2013) A novel DNA vaccine technology conveying protection against a lethal herpes simplex challenge in mice. PLoS One 8:e76407CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dutton J, Li B, Woo W-P, Marshak K, Xu Y, Huang ML, Dong L, Frazer I, Koelle D (2012) Protection against viral challenge in a murine model of HSV-2 infection conferred by mixed DNA vaccines. Presented at 37th International Herpesvirus Workshop, 37th International Herpesvirus Workshop, Calgary, Alberta, Canada, Abstract 6.52Google Scholar
  22. 22.
    Liu W, Gao F, Zhao KN, Zhao W, Fernando GJ, Thomas R, Frazer IH (2002) Codon modified human papillomavirus type 16 E7 DNA vaccine enhances cytotoxic T-lymphocyte induction and anti-tumour activity. Virology 301:43–52CrossRefPubMedGoogle Scholar
  23. 23.
    Sin J-I, Weiner DB (2000) Improving DNA vaccines targeting viral infection. Intervirology 43:233–246CrossRefPubMedGoogle Scholar
  24. 24.
    Bagley KC, Schwartz JA, Andersen H, Eldridge JH, Xu R, Ota-Setlik A, Geltz JJ, Halford WP, Fouts TR (2017) An interleukin 12 adjuvanted herpes simplex virus 2 DNA vaccine is more protective than a glycoprotein d subunit vaccine in a high-dose murine challenge model. Viral Immunol 30:178–195CrossRefPubMedGoogle Scholar
  25. 25.
    Braun RP, Dong L, Jerome S, Herber R, Roberts LK, Payne LG (2008) Multi-antigenic DNA immunization using herpes simplex virus type 2 genomic fragments. Hum Vaccin 4:36–43CrossRefPubMedGoogle Scholar
  26. 26.
    Everett RD, Fenwick ML (1990) Comparative DNA sequence analysis of the host shutoff genes of different strains of herpes simplex virus: type 2 strain HG52 encodes a truncated UL41 product. J Gen Virol 71(Pt 6):1387–1390CrossRefPubMedGoogle Scholar
  27. 27.
    Dudek TE, Torres-Lopez E, Crumpacker C, Knipe DM (2011) Evidence for differences in immunologic and pathogenesis properties of herpes simplex virus 2 strains from the United States and South Africa. J Infect Dis 203:1434–1441CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Petro CD, Weinrick B, Khajoueinejad N, Burn C, Sellers R, Jacobs WR Jr, Herold BC (2016) HSV-2 DeltagD elicits FcgammaR-effector antibodies that protect against clinical isolates. JCI Insight 1:e88529CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Renner DW, Szpara ML (2018) Impacts of genome-wide analyses on our understanding of human herpesvirus diversity and evolution. J Virol 92:e00908-17CrossRefPubMedGoogle Scholar
  30. 30.
    Greninger AL, Roychoudhury P, Xie H, Casto A, Cent A, Pepper G, Koelle DM, Huang ML, Wald A, Johnston C, Jerome KR (2018) Ultrasensitive capture of human herpes simplex virus genomes directly from clinical samples reveals extraordinarily limited evolution in cell culture. mSphere 3:e00283-18CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Casto AM, Roychoudhury P, Xie H, Selke S, Perchetti GA, Wofford H, Huang ML, Verjans GMGM, Gottlieb GS, Wald A, Jerome KR, Koelle DM, Johnston C, Greninger AL (2019) Large, stable, contemporary interspecies recombination events in circulating human herpes simplex viruses. J Infect Dis. pii: jiz199. doi: 10.1093/infdis/jiz199. [Epub ahead of print] PMID: 31016321Google Scholar
  32. 32.
    Johnston C, Magaret A, Roychoudhury P, Greninger AL, Reeves D, Schiffer J, Jerome KR, Sather C, Diem K, Lingappa JR, Celum C, Koelle DM, Wald A (2017) Dual-strain genital herpes simplex virus type 2 (HSV-2) infection in the US, Peru, and 8 countries in sub-Saharan Africa: a nested cross-sectional viral genotyping study. PLoS Med 14:e1002475CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Koelle DM, Norberg P, Fitzgibbon MP, Russell RM, Greninger AL, Huang ML, Stensland L, Jing L, Magaret AS, Diem K, Selke S, Xie H, Celum C, Lingappa JR, Jerome KR, Wald A, Johnston C (2017) Worldwide circulation of HSV-2 x HSV-1 recombinant strains. Sci Rep 7:44084CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Burrel S, Boutolleau D, Ryu D, Agut H, Merkel K, Leendertz FH, Calvignac-Spencer S (2017) Ancient recombination events between human herpes simplex viruses. Mol Biol Evol 34:1713–1721CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Stanberry LR, Kit S, Myers MG (1985) Thymidine kinase-deficient herpes simplex virus type 2 genital infection in guinea pigs. J Virol 55:322–328PubMedPubMedCentralGoogle Scholar
  36. 36.
    Nakanishi Y, Lu B, Gerard C, Iwasaki A (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462:510–513CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Halford WP, Puschel R, Gershburg E, Wilber A, Gershburg S, Rakowski B (2011) A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine. PLoS One 6:e17748CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Magaret AS, Wald A, Huang ML, Selke S, Corey L (2007) Optimizing PCR positivity criterion for detection of herpes simplex virus DNA on skin and mucosa. J Clin Microbiol 45:1618–1620CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    McClements WL, Armstrong ME, Keys RD, Liu MA (1996) Immunization with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease. Proc Natl Acad Sci U S A 93:11414–11420CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Belshe RB, Leone PA, Bernstein DI, Wald A, Levin MJ, Stapleton JT, Gorfinkel I, Morrow RL, Ewell MG, Stokes-Riner A, Dubin G, Heineman TC, Schulte JM, Deal CD (2012) Efficacy results of a trial of a herpes simplex vaccine. N Engl J Med 366:34–43CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cattamanchi A, Posavad CM, Wald A, Baine Y, Moses J, Higgins TJ, Ginsberg R, Ciccarelli R, Corey L, Koelle DM (2008) Phase I study of a herpes simplex virus type 2 (HSV-2) DNA vaccine administered to healthy, HSV-2-seronegative adults by a needle-free injection system. Clin Vaccine Immunol 15:1638–1643CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Masopust D, Soerens AG (2019) Tissue-resident t cells and other resident leukocytes. Annu Rev Immunol 37:521CrossRefPubMedGoogle Scholar
  43. 43.
    Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR, Carbone FR (2003) Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science 301:1925–1928CrossRefGoogle Scholar
  44. 44.
    Shin H, Iwasaki A (2012) A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491:463–467CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Iijima N, Iwasaki A (2014) T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346:93–98CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Srivastava R, Roy S, Coulon PA, Vahed H, Prakash S, Dhanushkodi N, Kim GJ, Fouladi MA, Campo J, Teng AA, Liang X, Schaefer H, BenMohamed L (2019) Therapeutic mucosal vaccination of HSV-2 infected guinea pigs with the ribonucleotide reductase 2 (RR2) protein boosts antiviral neutralizing antibodies and tissue-resident CD4(+) and CD8(+) TRM cells associated with protection against recurrent genital herpes. J Virol 93:e02309-18CrossRefPubMedGoogle Scholar
  47. 47.
    Xia J, Veselenak RL, Gorder SR, Bourne N, Milligan GN (2014) Virus-specific immune memory at peripheral sites of herpes simplex virus type 2 (HSV-2) infection in guinea pigs. PLoS One 9:e114652CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Milligan GN, Meador MG, Chu CF, Young CG, Martin TL, Bourne N (2005) Long-term presence of virus-specific plasma cells in sensory ganglia and spinal cord following intravaginal inoculation of herpes simplex virus type 2. J Virol 79:11537–11540CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Petro C, Gonzalez PA, Cheshenko N, Jandl T, Khajoueinejad N, Benard A, Sengupta M, Herold BC, Jacobs WR (2015) Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease. Elife 4Google Scholar
  50. 50.
    Lekstrom-Himes JA, Pesnicak L, Straus SE (1998) The quantity of latent viral DNA correlates with the relative rates at which herpes simplex virus types 1 and 2 cause recurrent genital herpes outbreaks. J Virol 72:2760–2764PubMedPubMedCentralGoogle Scholar
  51. 51.
    Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL (2003) Herpes simplex virus-specific memory CD8(+) T cells are selectively activated and retained in latently infected sensory Ganglia. Immunity 18:593–603CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Herbst-Kralovetz MM, Pyles RB (2006) Quantification of poly(I:C)-mediated protection against genital herpes simplex virus type 2 infection. J Virol 80:9988–9997CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Strasser JE, Arnold RL, Pachuk C, Higgins TJ, Bernstein DI (2000) Herpes simplex virus DNA vaccine efficacy: effect of glycoprotein D plasmid constructs. J Infect Dis 182:1304–1310CrossRefPubMedGoogle Scholar
  54. 54.
    Koelle DM (2003) Expression cloning for the discovery of viral antigens and epitopes recognized by T-cells. Methods 29:213–226CrossRefPubMedGoogle Scholar
  55. 55.
    Laing KJ, Dong L, Sidney J, Sette A, Koelle DM (2012) Immunology in the Clinic Review Series; focus on host responses: T cell responses to herpes simplex viruses. Clin Exp Immunol 167:47–58CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Malin SA, Davis BM, Molliver DC (2007) Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat Protoc 2:152–160CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Joshua O. Marshak
    • 1
  • Lichun Dong
    • 1
  • David M. Koelle
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of MedicineUniversity of WashingtonSeattleUSA
  2. 2.Department of Laboratory MedicineUniversity of WashingtonSeattleUSA
  3. 3.Department of Global HealthUniversity of WashingtonSeattleUSA
  4. 4.Vaccine and Infectious Diseases DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  5. 5.Benaroya Research InstituteSeattleUSA

Personalised recommendations