Advertisement

The Use of Microfluidic Neuronal Devices to Study the Anterograde Axonal Transport of Herpes Simplex Virus-1

  • Kevin Danastas
  • Anthony L. Cunningham
  • Monica Miranda-SaksenaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2060)

Abstract

Understanding how herpes simplex virus-1 (HSV-1) interacts with different parts of the neuron is fundamental in understanding the mechanisms behind HSV-1 transport during primary and recurrent infections. In this chapter, we describe a unique neuronal culture system that is capable of compartmentalizing neuronal cell bodies from their axons to study the transport of HSV-1 along axons. The ability to separate neuronal cell bodies and axons provides a unique model to investigate the mechanisms used by HSV-1 for viral transport, assembly, and exit from different parts of the neuron.

Key words

Microfluidics Neurons Herpes simplex virus Axons Transport 

Notes

Acknowledgments

This work was supported by the Australian National Health and Medical Research Grants (APP1069193 and APP1130512).

References

  1. 1.
    Miranda-Saksena M, Denes CE, Diefenbach RJ et al (2018) Infection and transport of herpes simplex virus type 1 in neurons: role of the cytoskeleton. Viruses 10:e92CrossRefGoogle Scholar
  2. 2.
    Denes CE, Miranda Saksena M, Cunningham AL et al (2018) Cytoskeletons in the closet: subversion in alphaherpesvirus infections. Viruses 10:e79CrossRefGoogle Scholar
  3. 3.
    Taylor AM, Rhee SW, Tu CH et al (2003) Microfluidic multicompartment device for neuroscience research. Langmuir 19:1551–1556CrossRefGoogle Scholar
  4. 4.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  5. 5.
    Taylor AM, Rhee SW, Jeon NL (2006) Microfluidic chambers for cell migration and neuroscience research. In: Microfluidic techniques: reviews and protocols. Humana Press, Totawa, NJGoogle Scholar
  6. 6.
    Liu WW, Goodhouse J, Jeon NL et al (2008) A microfluidic chamber for analysis of neuron-to-cell spread and axonal transport of an alpha-herpesvirus. PLoS One 3:e2382CrossRefGoogle Scholar
  7. 7.
    Howard PW, Howard TL, Johnson DC (2013) Herpes simplex virus membrane proteins gE/gI and US9 act cooperatively to promote transport of capsids and glycoproteins from neuron cell bodies into initial axon segments. J Virol 8:403–441CrossRefGoogle Scholar
  8. 8.
    Howard PW, Wright CC, Howard T et al (2014) Herpes simplex virus gE/gI extracellular domains promote axonal transport and spread from neurons to epithelial cells. J Virol 88:11178–11186CrossRefGoogle Scholar
  9. 9.
    Dohner K, Ramos-Nascimento A, Bialy D et al (2018) Importin alpha1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. PLoS Pathog 14:e1006823CrossRefGoogle Scholar
  10. 10.
    Neto E, Leitao L, Sousa DM et al (2016) Compartmentalized microfluidic platforms: the unrivaled breakthrough of in vitro tools for neurobiological research. J Neurosci 36:11573–11584CrossRefGoogle Scholar
  11. 11.
    Miranda-Saksena M, Boadle RA, Diefenbach RJ et al (2016) Dual role of herpes simplex virus 1 pUS9 in virus anterograde axonal transport and final assembly in growth cones in distal axons. J Virol 90:2653–2663CrossRefGoogle Scholar
  12. 12.
    Diefenbach RJ, Davis A, Miranda-Saksena M et al (2016) The basic domain of herpes simplex virus 1 pUS9 recruits kinesin-1 to facilitate egress from neurons. J Virol 90:2102–2111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Kevin Danastas
    • 1
    • 2
  • Anthony L. Cunningham
    • 1
    • 3
  • Monica Miranda-Saksena
    • 1
    • 2
    Email author
  1. 1.Centre for Virus ResearchThe Westmead Institute for Medical ResearchWestmeadAustralia
  2. 2.The University of SydneyWestmeadAustralia
  3. 3.Sydney Medical SchoolThe University of SydneyWestmeadAustralia

Personalised recommendations