Advertisement

Detection of Tumor Antigen-Specific T-Cell Responses After Oncolytic Vaccination

  • Jonathan G. Pol
  • Byram W. Bridle
  • Brian D. LichtyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2058)

Abstract

Oncolytic vaccines, which consist of recombinant oncolytic viruses (OV) encoding tumor-associated antigens (TAAs), have demonstrated potent antitumor efficacy in preclinical models and are currently evaluated in phase I/II clinical trials. On one hand, oncolysis of OV-infected malignant entities reinstates cancer immunosurveillance. On the other hand, overexpression of TAAs in infected cells further stimulates the adaptive arm of antitumor immunity. Particularly, the presence of tumor-specific CD8+ T lymphocytes within the tumor microenvironment, as well as in the periphery, has demonstrated prognostic value for cancer treatments. These effector CD8+ T cells can be detected through their production of the prototypical Tc1 cytokine: IFN-γ. The quantitative and qualitative assessment of this immune cell subset remains critical in the development process of efficient cancer vaccines, including oncolytic vaccines. The present chapter will describe a single-cell immunological assay, namely the intracellular cytokine staining (ICS), that allows the enumeration of IFN-γ-producing TAA-specific CD8+ T cells in various tissues (tumor, blood, lymphoid organs) following oncolytic vaccination.

Key words

Oncolytic virus Cancer vaccine Tumor antigen IFN-γ Intracellular cytokine staining (ICS) Flow cytometry 

Notes

Acknowledgments

J.G.P. was supported by the Seerave Foundation. B.W.B. was supported by the Terry Fox Research Institute. B.D.L. was supported by the Terry Fox Foundation, the Ontario Institute for Cancer Research, BioCanRx, and Turnstone Biologics.

Declaration of Interests: J.G.P., B.W.B., and B.D.L. share ownership of patents for cancer vaccination involving oncolytic vaccines. B.D.L. is cofounder and equity holder of and is on the board of directors of Turnstone Biologics.

References

  1. 1.
    Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G (2018) Antitumor benefits of antiviral immunity: an underappreciated aspect of Oncolytic virotherapies. Trends Immunol 39(3):209–221PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gujar S, Pol JG, Kroemer G (2018) Heating it up: oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies. Oncoimmunology 7(8):e1442169PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Pol JG, Atherton MJ, Bridle BW, Stephenson KB, Le Boeuf F, Hummel JL, Martin CG, Pomoransky J, Breitbach CJ, Diallo JS, Stojdl DF, Bell JC, Wan Y, Lichty BD (2018) Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virother 7:117–128CrossRefGoogle Scholar
  4. 4.
    Workenhe ST, Mossman KL (2014) Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies. Mol Ther 22(2):251–256PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Workenhe ST, Simmons G, Pol JG, Lichty BD, Halford WP, Mossman KL (2014) Immunogenic HSV-mediated oncolysis shapes the antitumor immune response and contributes to therapeutic efficacy. Mol Ther 22(1):123–131PubMedCrossRefGoogle Scholar
  6. 6.
    Workenhe ST, Mossman KL (2013) Rewiring cancer cell death to enhance oncolytic viro-immunotherapy. Oncoimmunology 2(12):e27138PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Diaz RM, Galivo F, Kottke T, Wongthida P, Qiao J, Thompson J, Valdes M, Barber G, Vile RG (2007) Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 67(6):2840–2848PubMedCrossRefGoogle Scholar
  8. 8.
    Bridle BW, Boudreau JE, Lichty BD, Brunelliere J, Stephenson K, Koshy S, Bramson JL, Wan Y (2009) Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 17(10):1814–1821PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bridle BW, Stephenson KB, Boudreau JE, Koshy S, Kazdhan N, Pullenayegum E, Brunelliere J, Bramson JL, Lichty BD, Wan Y (2010) Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther 18(8):1430–1439PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Castelo-Branco P, Passer BJ, Buhrman JS, Antoszczyk S, Marinelli M, Zaupa C, Rabkin SD, Martuza RL (2010) Oncolytic herpes simplex virus armed with xenogeneic homologue of prostatic acid phosphatase enhances antitumor efficacy in prostate cancer. Gene Ther 17(6):805–810PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zhang YQ, Tsai YC, Monie A, Wu TC, Hung CF (2010) Enhancing the therapeutic effect against ovarian cancer through a combination of viral oncolysis and antigen-specific immunotherapy. Mol Ther 18(4):692–699PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wongthida P, Diaz RM, Pulido C, Rommelfanger D, Galivo F, Kaluza K, Kottke T, Thompson J, Melcher A, Vile R (2011) Activating systemic T-cell immunity against self tumor antigens to support oncolytic virotherapy with vesicular stomatitis virus. Hum Gene Ther 22(11):1343–1353PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kottke T, Errington F, Pulido J, Galivo F, Thompson J, Wongthida P, Diaz RM, Chong H, Ilett E, Chester J, Pandha H, Harrington K, Selby P, Melcher A, Vile R (2011) Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. Nat Med 17(7):854–859PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Rommelfanger DM, Wongthida P, Diaz RM, Kaluza KM, Thompson JM, Kottke TJ, Vile RG (2012) Systemic combination virotherapy for melanoma with tumor antigen-expressing vesicular stomatitis virus and adoptive T-cell transfer. Cancer Res 72(18):4753–4764PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pulido J, Kottke T, Thompson J, Galivo F, Wongthida P, Diaz RM, Rommelfanger D, Ilett E, Pease L, Pandha H, Harrington K, Selby P, Melcher A, Vile R (2012) Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol 30(4):337–343PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bridle BW, Chen L, Lemay CG, Diallo JS, Pol J, Nguyen A, Capretta A, He R, Bramson JL, Bell JC, Lichty BD, Wan Y (2013) HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Mol Ther 21(4):887–894PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pol JG, Zhang L, Bridle BW, Stephenson KB, Resseguier J, Hanson S, Chen L, Kazdhan N, Bramson JL, Stojdl DF, Wan Y, Lichty BD (2014) Maraba virus as a potent oncolytic vaccine vector. Mol Ther 22(2):420–429PubMedCrossRefGoogle Scholar
  18. 18.
    Alonso-Camino V, Rajani K, Kottke T, Rommelfanger-Konkol D, Zaidi S, Thompson J, Pulido J, Ilett E, Donnelly O, Selby P, Pandha H, Melcher A, Harrington K, Diaz RM, Vile R (2014) The profile of tumor antigens which can be targeted by immunotherapy depends upon the tumor's anatomical site. Mol Ther 22(11):1936–1948PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Blanchard M, Shim KG, Grams MP, Rajani K, Diaz RM, Furutani KM, Thompson J, Olivier KR, Park SS, Markovic SN, Pandha H, Melcher A, Harrington K, Zaidi S, Vile R (2015) Definitive management of oligometastatic melanoma in a murine model using combined ablative radiation therapy and viral immunotherapy. Int J Radiat Oncol Biol Phys 93(3):577–587PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zaidi S, Blanchard M, Shim K, Ilett E, Rajani K, Parrish C, Boisgerault N, Kottke T, Thompson J, Celis E, Pulido J, Selby P, Pandha H, Melcher A, Harrington K, Vile R (2015) Mutated BRAF emerges as a major effector of recurrence in a murine melanoma model after treatment with immunomodulatory agents. Mol Ther 23(5):845–856PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Bridle BW, Nguyen A, Salem O, Zhang L, Koshy S, Clouthier D, Chen L, Pol J, Swift SL, Bowdish DM, Lichty BD, Bramson JL, Wan Y (2016) Privileged antigen presentation in splenic B cell follicles maximizes T cell responses in prime-boost vaccination. J Immunol 196(11):4587–4595PubMedCrossRefGoogle Scholar
  22. 22.
    Cockle JV, Rajani K, Zaidi S, Kottke T, Thompson J, Diaz RM, Shim K, Peterson T, Parney IF, Short S, Selby P, Ilett E, Melcher A, Vile R (2016) Combination viroimmunotherapy with checkpoint inhibition to treat glioma, based on location-specific tumor profiling. Neuro-Oncology 18(4):518–527PubMedCrossRefGoogle Scholar
  23. 23.
    Atherton MJ, Stephenson KB, Pol J, Wang F, Lefebvre C, Stojdl DF, Nikota JK, Dvorkin-Gheva A, Nguyen A, Chen L, Johnson-Obaseki S, Villeneuve PJ, Diallo JS, Dimitroulakos J, Wan Y, Lichty BD (2017) Customized viral immunotherapy for HPV-associated cancer. Cancer Immunol Res 5(10):847–859PubMedCrossRefGoogle Scholar
  24. 24.
    Atherton MJ, Stephenson KB, Tzelepis F, Bakhshinyan D, Nikota JK, Son HH, Jirovec A, Lefebvre C, Dvorkin-Gheva A, Ashkar AA, Wan Y, Stojdl DF, Belanger EC, Breau RH, Bell JC, Saad F, Singh SK, Diallo JS, Lichty BD (2018) Transforming the prostatic tumor microenvironment with oncolytic virotherapy. Oncoimmunology 7(7):e1445459PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Atherton MJ, Stephenson KB, Nikota JK, Hu QN, Nguyen A, Wan Y, Lichty BD (2018) Preclinical development of peptide vaccination combined with oncolytic MG1-E6E7 for HPV-associated cancer. Vaccine 36(16):2181–2192PubMedCrossRefGoogle Scholar
  26. 26.
    Pol JG, Acuna SA, Yadollahi B, Tang N, Stephenson KB, Atherton MJ, Hanwell D, El-Warrak A, Goldstein A, Moloo B, Turner PV, Lopez R, LaFrance S, Evelegh C, Denisova G, Parsons R, Millar J, Stoll G, Martin CG, Pomoransky J, Breitbach CJ, Bramson JL, Bell JC, Wan Y, Stojdl DF, Lichty BD, McCart JA (2019) Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncoimmunology 8(1):e1512329PubMedCrossRefGoogle Scholar
  27. 27.
    Boisgerault N, Kottke T, Pulido J, Thompson J, Diaz RM, Rommelfanger-Konkol D, Embry A, Saenz D, Poeschla E, Pandha H, Harrington K, Melcher A, Selby P, Vile R (2013) Functional cloning of recurrence-specific antigens identifies molecular targets to treat tumor relapse. Mol Ther 21(8):1507–1516PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pol JG, Levesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L (2018) Trial watch: oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 7(12):e1503032PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Van den Eynde M, Mlecnik B, Bindea G, Fredriksen T, Church SE, Lafontaine L, Haicheur N, Marliot F, Angelova M, Vasaturo A, Bruni D, Jouret-Mourin A, Baldin P, Huyghe N, Haustermans K, Debucquoy A, Van Cutsem E, Gigot JF, Hubert C, Kartheuser A, Remue C, Leonard D, Valge-Archer V, Pages F, Machiels JP, Galon J (2018) The link between the multiverse of immune microenvironments in metastases and the survival of colorectal cancer patients. Cancer Cell 34(6):1012–1026 e1013Google Scholar
  30. 30.
    Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, Lugli A, Zlobec I, Rau TT, Berger MD, Nagtegaal ID, Vink-Borger E, Hartmann A, Geppert C, Kolwelter J, Merkel S, Grutzmann R, Van den Eynde M, Jouret-Mourin A, Kartheuser A, Leonard D, Remue C, Wang JY, Bavi P, Roehrl MHA, Ohashi PS, Nguyen LT, Han S, MacGregor HL, Hafezi-Bakhtiari S, Wouters BG, Masucci GV, Andersson EK, Zavadova E, Vocka M, Spacek J, Petruzelka L, Konopasek B, Dundr P, Skalova H, Nemejcova K, Botti G, Tatangelo F, Delrio P, Ciliberto G, Maio M, Laghi L, Grizzi F, Fredriksen T, Buttard B, Angelova M, Vasaturo A, Maby P, Church SE, Angell HK, Lafontaine L, Bruni D, El Sissy C, Haicheur N, Kirilovsky A, Berger A, Lagorce C, Meyers JP, Paustian C, Feng Z, Ballesteros-Merino C, Dijkstra J, van de Water C, van Lent-van Vliet S, Knijn N, Musina AM, Scripcariu DV, Popivanova B, Xu M, Fujita T, Hazama S, Suzuki N, Nagano H, Okuno K, Torigoe T, Sato N, Furuhata T, Takemasa I, Itoh K, Patel PS, Vora HH, Shah B, Patel JB, Rajvik KN, Pandya SJ, Shukla SN, Wang Y, Zhang G, Kawakami Y, Marincola FM, Ascierto PA, Sargent DJ, Fox BA, Galon J (2018) International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139CrossRefGoogle Scholar
  31. 31.
    Nizard M, Roussel H, Diniz MO, Karaki S, Tran T, Voron T, Dransart E, Sandoval F, Riquet M, Rance B, Marcheteau E, Fabre E, Mandavit M, Terme M, Blanc C, Escudie JB, Gibault L, Barthes FLP, Granier C, Ferreira LCS, Badoual C, Johannes L, Tartour E (2017) Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat Commun 8:15221PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14(12):717–734PubMedCrossRefGoogle Scholar
  33. 33.
    Ganesan AP, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, Mellows T, Samaniego-Castruita D, Singh D, Seumois G, Alzetani A, Woo E, Friedmann PS, King EV, Thomas GJ, Sanchez-Elsner T, Vijayanand P, Ottensmeier CH (2017) Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat Immunol 18(8):940–950PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mould RC, AuYeung AWK, van Vloten JP, Susta L, Mutsaers AJ, Petrik JJ, Wood GA, Wootton SK, Karimi K, Bridle BW (2017) Enhancing immune responses to cancer vaccines using multi-site injections. Sci Rep 7(1):8322Google Scholar
  35. 35.
    Liu J, Blake SJ, Yong MC, Harjunpaa H, Ngiow SF, Takeda K, Young A, O'Donnell JS, Allen S, Smyth MJ, Teng MW (2016) Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov 6(12):1382–1399PubMedCrossRefGoogle Scholar
  36. 36.
    Dolton G, Tungatt K, Lloyd A, Bianchi V, Theaker SM, Trimby A, Holland CJ, Donia M, Godkin AJ, Cole DK, Straten PT, Peakman M, Svane IM, Sewell AK (2015) More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology 146(1):11–22PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Klein-Hessling S, Muhammad K, Klein M, Pusch T, Rudolf R, Floter J, Qureischi M, Beilhack A, Vaeth M, Kummerow C, Backes C, Schoppmeyer R, Hahn U, Hoth M, Bopp T, Berberich-Siebelt F, Patra A, Avots A, Muller N, Schulze A, Serfling E (2017) NFATc1 controls the cytotoxicity of CD8(+) T cells. Nat Commun 8(1):511PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hersperger AR, Makedonas G, Betts MR (2008) Flow cytometric detection of perforin upregulation in human CD8 T cells. Cytometry A 73(11):1050–1057PubMedCrossRefGoogle Scholar
  39. 39.
    Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, Slot JW, Geuze HJ (1991) Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 173(5):1099–1109PubMedCrossRefGoogle Scholar
  40. 40.
    Smith SG, Smits K, Joosten SA, van Meijgaarden KE, Satti I, Fletcher HA, Caccamo N, Dieli F, Mascart F, McShane H, Dockrell HM, Ottenhoff TH (2015) Intracellular cytokine staining and flow cytometry: considerations for application in clinical trials of novel tuberculosis vaccines. PLoS One 10(9):e0138042PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Maecker HT, Rinfret A, D'Souza P, Darden J, Roig E, Landry C, Hayes P, Birungi J, Anzala O, Garcia M, Harari A, Frank I, Baydo R, Baker M, Holbrook J, Ottinger J, Lamoreaux L, Epling CL, Sinclair E, Suni MA, Punt K, Calarota S, El-Bahi S, Alter G, Maila H, Kuta E, Cox J, Gray C, Altfeld M, Nougarede N, Boyer J, Tussey L, Tobery T, Bredt B, Roederer M, Koup R, Maino VC, Weinhold K, Pantaleo G, Gilmour J, Horton H, Sekaly RP (2005) Standardization of cytokine flow cytometry assays. BMC Immunol 6:13PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Betts MR, Koup RA (2004) Detection of T-cell degranulation: CD107a and b. Methods Cell Biol 75:497–512PubMedCrossRefGoogle Scholar
  43. 43.
    Mojic M, Takeda K, Hayakawa Y (2017) The dark side of IFN-gamma: its role in promoting cancer immunoevasion. Int J Mol Sci 19(1).  https://doi.org/10.3390/ijms19010089PubMedCentralCrossRefGoogle Scholar
  44. 44.
    Jonker DJ, Hotte SJ, Razak ARA, Renouf DJ, Lichty B, Bell JC, Powers J, Breitbach CJ, Stojdl DF, Stephenson KB, Bramson JL, Hummel J, Lemay CG, Cutz J-C, Wells J, Eady R, Sun X, Tu D, Dancey J (2017) Phase I study of oncolytic virus (OV) MG1 maraba/MAGE-A3 (MG1MA3), with and without transgenic MAGE-A3 adenovirus vaccine (AdMA3) in incurable advanced/metastatic MAGE-A3-expressing solid tumours: CCTG IND.214. J Clin Oncol 35(15_suppl):e14637–e14637.  https://doi.org/10.1200/JCO.2017.35.15_suppl.e14637CrossRefGoogle Scholar
  45. 45.
    Butterfield LH, Buffo MJ (2014) Immunologic monitoring of cancer vaccine trials using the ELISPOT assay. Methods Mol Biol 1102:71–82PubMedCrossRefGoogle Scholar
  46. 46.
    Bagarazzi ML, Yan J, Morrow MP, Shen X, Parker RL, Lee JC, Giffear M, Pankhong P, Khan AS, Broderick KE, Knott C, Lin F, Boyer JD, Draghia-Akli R, White CJ, Kim JJ, Weiner DB, Sardesai NY (2012) Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med 4(155):155ra138PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Landreth KS (2002) Critical windows in development of the rodent immune system. Hum Exp Toxicol 21(9-10):493–498PubMedCrossRefGoogle Scholar
  48. 48.
    Humeau J, Levesque S, Kroemer G, Pol JG (2019) Gold standard assessment of immunogenic cell death in oncological mouse models. Methods Mol Biol 1884:297–315PubMedCrossRefGoogle Scholar
  49. 49.
    Bridle BW, Clouthier D, Zhang L, Pol J, Chen L, Lichty BD, Bramson JL, Wan Y (2013) Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8(+) T-cell responses to anticancer vaccines. Oncoimmunology 2(8):e26013PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zhang L, Bridle BW, Chen L, Pol J, Spaner D, Boudreau JE, Rosen A, Bassett JD, Lichty BD, Bramson JL, Wan Y (2013) Delivery of viral-vectored vaccines by B cells represents a novel strategy to accelerate CD8(+) T-cell recall responses. Blood 121(13):2432–2439PubMedCrossRefGoogle Scholar
  51. 51.
    Kershaw MH, Hsu C, Mondesire W, Parker LL, Wang G, Overwijk WW, Lapointe R, Yang JC, Wang RF, Restifo NP, Hwu P (2001) Immunization against endogenous retroviral tumor-associated antigens. Cancer Res 61(21):7920–7924PubMedPubMedCentralGoogle Scholar
  52. 52.
    Huang AY, Gulden PH, Woods AS, Thomas MC, Tong CD, Wang W, Engelhard VH, Pasternack G, Cotter R, Hunt D, Pardoll DM, Jaffee EM (1996) The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci U S A 93(18):9730–9735PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zeh HJ 3rd, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC (1999) High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 162(2):989–994PubMedGoogle Scholar
  54. 54.
    Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of "self"-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188(2):277–286PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rosenthal KS, Stone S, Koski G, Zimmerman DH (2017) LEAPS vaccine incorporating HER-2/neu epitope elicits protection that prevents and limits tumor growth and spread of breast cancer in a mouse model. J Immunol Res 2017:3613505.  https://doi.org/10.1155/2017/3613505PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gall VA, Philips AV, Qiao N, Clise-Dwyer K, Perakis AA, Zhang M, Clifton GT, Sukhumalchandra P, Ma Q, Reddy SM, Yu D, Molldrem JJ, Peoples GE, Alatrash G, Mittendorf EA (2017) Trastuzumab increases HER2 uptake and cross-presentation by dendritic cells. Cancer Res 77(19):5374–5383PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Peng S, Ji H, Trimble C, He L, Tsai YC, Yeatermeyer J, Boyd DA, Hung CF, Wu TC (2004) Development of a DNA vaccine targeting human papillomavirus type 16 oncoprotein E6. J Virol 78(16):8468–8476PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    de Oliveira LM, Morale MG, Chaves AA, Cavalher AM, Lopes AS, Diniz Mde O, Schanoski AS, de Melo RL, Ferreira LC, de Oliveira ML, Demasi M, Ho PL (2015) Design, immune responses and anti-tumor potential of an HPV16 E6E7 multi-epitope vaccine. PLoS One 10(9):e0138686PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Naslund TI, Uyttenhove C, Nordstrom EK, Colau D, Warnier G, Jondal M, Van den Eynde BJ, Liljestrom P (2007) Comparative prime-boost vaccinations using Semliki Forest virus, adenovirus, and ALVAC vectors demonstrate differences in the generation of a protective central memory CTL response against the P815 tumor. J Immunol 178(11):6761–6769PubMedCrossRefGoogle Scholar
  60. 60.
    Garcia-Hernandez Mde L, Gray A, Hubby B, Klinger OJ, Kast WM (2008) Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res 68(3):861–869PubMedCrossRefGoogle Scholar
  61. 61.
    Scrimieri F, Askew D, Corn DJ, Eid S, Bobanga ID, Bjelac JA, Tsao ML, Allen F, Othman YS, Wang SC, Huang AY (2013) Murine leukemia virus envelope gp70 is a shared biomarker for the high-sensitivity quantification of murine tumor burden. Oncoimmunology 2(11):e26889PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, Freeman GJ, Sharpe AH (2017) PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 214(4):895–904PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Regan RD, Fenyk-Melody JE, Tran SM, Chen G, Stocking KL (2016) Comparison of submental blood collection with the retroorbital and submandibular methods in mice (Mus musculus). J Am Assoc Lab Anim Sci 55(5):570–576PubMedPubMedCentralGoogle Scholar
  64. 64.
    Fritsche J, Rakitsch B, Hoffgaard F, Romer M, Schuster H, Kowalewski DJ, Priemer M, Stos-Zweifel V, Horzer H, Satelli A, Sonntag A, Goldfinger V, Song C, Mahr A, Ott M, Schoor O, Weinschenk T (2018) Translating immunopeptidomics to immunotherapy-decision-making for patient and personalized target selection. Proteomics 18(12):e1700284.  https://doi.org/10.1002/pmic.201700284PubMedCrossRefGoogle Scholar
  65. 65.
    Murphy JP, Konda P, Kowalewski DJ, Schuster H, Clements D, Kim Y, Cohen AM, Sharif T, Nielsen M, Stevanovic S, Lee PW, Gujar S (2017) MHC-I ligand discovery using targeted database searches of mass spectrometry data: implications for T-cell immunotherapies. J Proteome Res 16(4):1806–1816.  https://doi.org/10.1021/acs.jproteome.6b00971PubMedCrossRefGoogle Scholar
  66. 66.
    Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R (2015) Analysis of major histocompatibility complex (MHC) immunopeptidomes using mass spectrometry. Mol Cell Proteomics 14(12):3105–3117PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Vicetti Miguel RD, Maryak SA, Cherpes TL (2012) Brefeldin A, but not monensin, enables flow cytometric detection of interleukin-4 within peripheral T cells responding to ex vivo stimulation with chlamydia trachomatis. J Immunol Methods 384(1-2):191–195PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jamur MC, Oliver C (2010) Permeabilization of cell membranes. Methods Mol Biol 588:63–66PubMedCrossRefGoogle Scholar
  69. 69.
    Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K (2012) Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol 16(3):400–405PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP (2014) Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med 211(4):715–725PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ai W, Li H, Song N, Li L, Chen H (2013) Optimal method to stimulate cytokine production and its use in immunotoxicity assessment. Int J Environ Res Public Health 10(9):3834–3842PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Jonathan G. Pol
    • 1
    • 2
    • 3
    • 4
    • 5
  • Byram W. Bridle
    • 6
  • Brian D. Lichty
    • 7
    • 8
    Email author
  1. 1.Gustave Roussy Comprehensive Cancer InstituteVillejuifFrance
  2. 2.INSERM, U1138ParisFrance
  3. 3.Equipe 11 Labellisée par la Ligue Nationale Contre le CancerCentre de Recherche des CordeliersParisFrance
  4. 4.Université de ParisParisFrance
  5. 5.Sorbonne UniversitéParisFrance
  6. 6.Department of Pathobiology, Ontario Veterinary CollegeUniversity of GuelphGuelphCanada
  7. 7.Department of Pathology and Molecular Medicine, McMaster Immunology Research CentreMcMaster UniversityHamiltonCanada
  8. 8.Turnstone BiologicsOttawaCanada

Personalised recommendations