Advertisement

Expression Analysis of Important Genes Involved in Nitrogen Metabolism Under Hypoxia

  • Mallesham Bulle
  • Reddy Kishorekumar
  • Aakanksha Wany
  • Kapuganti Jagadis GuptaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2057)

Abstract

Hypoxia or anoxia condition can occurs during flooding or waterlogging and can cause intense damage to the plants. Since oxygen is important for active operation of electron transport chain in mitochondria to generate energy production (ATP) any drop in oxygen can cause an energy crisis during flooding/waterlogging. To cope with this energy crisis plants have developed various anatomical, physiological, and biochemical adaptations. Perception of signals and induction of genes are required for initiation of these adaptive responses. Various genes involved in nitrogen, carbon, and fermentative metabolism play a role in hypoxic tolerance. Regulation of genes involved in nitrogen metabolism also plays a role under hypoxia. Hence in this present chapter we describe the expression of nitrate reductase-1 (NIA1), nitrate reductase-2 (NIA2), and glutamine synthetase-1 (GLN-1) during hypoxia in Arabidopsis.

Key words

Nitrogen Nitrate reductase 1 (NIA1Nitrate reductase 2 (NIA2Glutamine synthetase 1 (GLN1

References

  1. 1.
    Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186CrossRefGoogle Scholar
  2. 2.
    Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST, Cristescu SM, Harren FJ, Bauwe H, Fernie AR, Kaiser WM (2012) The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. J Exp Bot 64:553–568CrossRefGoogle Scholar
  3. 3.
    Tischner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23:1005–1024CrossRefGoogle Scholar
  4. 4.
    Crawford NM, Forde BG (2002) Molecular and developmental biology of inorganic nitrogen nutrition. Arabidopsis Book 1.  https://doi.org/10.1199/tab.0011
  5. 5.
    Roycewicz P, Malamy JE (2012) Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays. Philos Trans R Soc B 367:1489–1500CrossRefGoogle Scholar
  6. 6.
    Landrein B, Formosa-Jordan P, Malivert A, Schuster C, Melnyk CW, Yang W, Turnbull C, Meyerowitz EM, Locke JC, Jönsson H (2018) Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. Proc Natl Acad Sci U S A 115:1382–1387CrossRefGoogle Scholar
  7. 7.
    Wany A, Gupta AK, Kumari A, Mishra S, Singh N, Pandey S, Vanvari R, Igamberdiev AU, Fernie AR, Gupta KJ (2018) Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis. Ann Bot.  https://doi.org/10.1093/aob/mcy202
  8. 8.
    Rocha M, Licausi L, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, Dongen JT (2010a) Glycolysis and the TCA-cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152:1501–1513CrossRefGoogle Scholar
  9. 9.
    Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339CrossRefGoogle Scholar
  10. 10.
    Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036CrossRefGoogle Scholar
  11. 11.
    Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–256CrossRefGoogle Scholar
  12. 12.
    Narsai R, Rocha M, Geigenberger P, Whelan J, van Dongen JT (2011) Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol 190:472–487CrossRefGoogle Scholar
  13. 13.
    Gupta KJ, Zabalza A, Van Dongen JT (2009) Regulation of respiration when the oxygen availability changes. Physiol Plant 137:383–391CrossRefGoogle Scholar
  14. 14.
    Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226:465–474CrossRefGoogle Scholar
  15. 15.
    Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494CrossRefGoogle Scholar
  16. 16.
    Reggiani R, Nebuloni M, Mattana M, Brambilla I (2000) Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase/glutamate synthase cycle. Amino Acids 18:207–217CrossRefGoogle Scholar
  17. 17.
    Good AG, Crosby WL (1989) Anaerobic induction of alanine aminotransferase in barley root tissue. Plant Physiol 90:1305–1309CrossRefGoogle Scholar
  18. 18.
    Rocha M, Sodek L, Licausi F, Hameed MW, Dornelas MC, van Dongen JT (2010b) Analysis of alanine aminotransferase in various organs of soybean (Glycine max) and in dependence of different nitrogen fertilisers during hypoxic stress. Amino Acids 39:1043–1053CrossRefGoogle Scholar
  19. 19.
    Botrel A, Kaiser WM (1997) Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201:496–501CrossRefGoogle Scholar
  20. 20.
    Botrel A, Magne C, Kaiser WM (1996) Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol Biochem 34:645–652Google Scholar
  21. 21.
    Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743CrossRefGoogle Scholar
  22. 22.
    Limami AM, Glevarec G, Ricoult C, Cliquet JB, Planchet E (2008) Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress. J Exp Bot 59:2325–2335CrossRefGoogle Scholar
  23. 23.
    Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Mallesham Bulle
    • 1
  • Reddy Kishorekumar
    • 1
  • Aakanksha Wany
    • 1
  • Kapuganti Jagadis Gupta
    • 1
    Email author
  1. 1.National Institute of Plant Genome ResearchNew DelhiIndia

Personalised recommendations