Fluorimetric-Based Method to Detect and Quantify Total S-Nitrosothiols (SNOs) in Plant Samples

  • Paulo T. MiotoEmail author
  • Alejandra Matiz
  • Luciano Freschi
  • Francisco J. Corpas
Part of the Methods in Molecular Biology book series (MIMB, volume 2057)


Accumulating experimental evidence indicates that S-nitrosylation (technically S-nitrosation) events have a central role in plant biology, presumably accounting for much of the widespread influence of nitric oxide (NO) on developmental, metabolic, and stress-related plant responses. Therefore, the accurate detection and quantification of S-nitrosylated proteins and peptides can be particularly useful to determine the relevance of this class of compounds in the ever-increasing number of NO-dependent signaling events described in plant systems. Up to now, the quantification of S-nitrosothiols (SNOs) in plant samples has mostly relied on the Saville reaction and the ozone-based chemiluminescence method, which lacks sensitivity and are very time-consuming, respectively. Taking advantage of the photolytic properties of S-nitrosylated proteins and peptides, the method described in this chapter allows simple, fast, and high-throughput detection of SNOs in plant samples.

Key words

Ozone chemiluminescence Saville S-nitrosothiols S-nitrosoglutathione Nitric oxide Nitrosylated proteins 



Funding: This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [grant numbers 2011/50637-0, 2013/18056-2 and 2013/15108-1], Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [grant numbers 442045/2014-0, and 309504/2014-7], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [grant number 99999.006262/2015-05] and CNCSIS/UEFISCDI [grant PN-II-RU-TE-2014-4-2555]. Research in FJC laboratory is supported by the ERDF-cofinanced grants from the Ministry of Economy and Competitiveness (AGL2015-65104-P) and Junta de Andalucía (group BIO192), Spain.


  1. 1.
    Bethke PC, Libourel IG, Jones RL (2006) Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57:517–526CrossRefGoogle Scholar
  2. 2.
    Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248CrossRefGoogle Scholar
  3. 3.
    Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588CrossRefGoogle Scholar
  4. 4.
    Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733CrossRefGoogle Scholar
  5. 5.
    Wang Y, Loake GJ, Chu C (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front Plant Sci 4:314PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122CrossRefGoogle Scholar
  7. 7.
    Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176CrossRefGoogle Scholar
  8. 8.
    Agurla S, Gayatri G, Raghavendra AS (2014) Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide 43C:89–96CrossRefGoogle Scholar
  9. 9.
    Prado AM, Colac OR, Moreno N et al (2008) Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. Mol Plant 1:703–714CrossRefGoogle Scholar
  10. 10.
    Bright J, Hiscocl SJ, James PE et al (2009) Pollen generates nitric oxide and nitrite: a possible link to pollen-induced allergic responses. Plant Physiol Biochem 47:49–55CrossRefGoogle Scholar
  11. 11.
    Jiménez-Quesada MJ, Carmona R, Lima-Cabello E, Traverso JA, Castro AJ, Claros MG, Alché JD (2017) Generation of nitric oxide by olive (Olea europaea L.) pollen during in vitro germination and assessment of the S-nitroso- and nitro-proteomes by computational predictive methods. Nitric Oxide 68:23–37CrossRefGoogle Scholar
  12. 12.
    Simpson GG (2005) NO flowering. BioEssays 27:239–241CrossRefGoogle Scholar
  13. 13.
    Manjunatha G, Lokesh V, Neelwarne B (2010) Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 28:489–499CrossRefGoogle Scholar
  14. 14.
    Corpas FJ, Freschi L, Rodríguez-Ruiz M et al (2018) Nitro-oxidative metabolism during fruit ripening. J Exp Bot.
  15. 15.
    Sokolovski S, Blatt MR (2004) Nitric oxide block of outward rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol 136:4275–4284CrossRefGoogle Scholar
  16. 16.
    Feechan A, Kwon E, Yun B-W et al (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102(22):8054–8059CrossRefGoogle Scholar
  17. 17.
    Tada Y, Spoel SH, Pajerowska-Mukhtar K et al (2008) Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956CrossRefGoogle Scholar
  18. 18.
    Yun BW, Feechan A, Yin M et al (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268CrossRefGoogle Scholar
  19. 19.
    Fares A, Rossignol M, Peltier JB (2011) Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem Biophys Res Commun 416:331–336CrossRefGoogle Scholar
  20. 20.
    Wang P, Du Y, Hou YJ et al (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci U S A 112:613–618CrossRefGoogle Scholar
  21. 21.
    Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S, Lamotte O, Wendehenne D (2012) Protein S-nitrosylation: what’s going on in plants? Free Radic Biol Med 53:1101–1110CrossRefGoogle Scholar
  22. 22.
    Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152CrossRefGoogle Scholar
  23. 23.
    Zaffagnini M, De Mia M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P (2016) Protein S-nitrosylation in photosynthetic organisms: a comprehensive overview with future perspectives. Biochim Biophys Acta 1864:952–966CrossRefGoogle Scholar
  24. 24.
    Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813CrossRefGoogle Scholar
  25. 25.
    Airaki M, Sánchez-Moreno L, Leterrier M, Barroso JB, Palma JM, Corpas FJ (2011) Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/MS. Plant Cell Physiol 52:2006–2015CrossRefGoogle Scholar
  26. 26.
    Corpas FJ, Alché JD, Barroso JB (2013) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126PubMedPubMedCentralGoogle Scholar
  27. 27.
    Frungillo L, Skelly MJ, Loake GJ, Spoel SH, Salgado I (2014) S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat Commun 5:5401CrossRefGoogle Scholar
  28. 28.
    Rodríguez-Ruiz M, Mioto PT, Palma JM et al (2017) Detection of protein S-nitrosothiols (SNOs) in plant samples on diaminofluorescein (DAF) gels. Bio-Protocol 7(18):e2559CrossRefGoogle Scholar
  29. 29.
    Lindermayr C (2017) Crosstalk between reactive oxygen species and nitric oxide in plants: key role of S-nitrosoglutathione reductase. Free Radic Biol Med. pii: S0891-5849(17)31231-5Google Scholar
  30. 30.
    Saville B (1958) A scheme for the colorimetric determination of microgram amounts of thiols. Analyst 83:670–672CrossRefGoogle Scholar
  31. 31.
    King M, Gildemeister O, Gaston B et al (2005) Assessment of S-nitrosothiols on diaminofluorescein gels. Anal Biochem 346:69–76CrossRefGoogle Scholar
  32. 32.
    Diers AR, Keszler A, Hogg N (2014) Detection of S-nitrosothiols. BBA-Gen Subj 1840:892–900CrossRefGoogle Scholar
  33. 33.
    Barroso JB, Valderrama R, Carreras A et al (2016) Quantification and localization of S-nitrosothiols (SNOs) in higher plants. Methods Mol Biol 1424:139–147CrossRefGoogle Scholar
  34. 34.
    Mioto PT, Rodriguez-Ruiz M, Mot AC et al (2017) Alternative fluorimetric-based method to detect and compare total S-nitrosothiols in plants. Nitric Oxide 68:7–13CrossRefGoogle Scholar
  35. 35.
    Palmer L, Gaston B (2008) S-nitrosothiol assays that avoid the use of iodine. Method Enzymol 440:157–176CrossRefGoogle Scholar
  36. 36.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Paulo T. Mioto
    • 1
    Email author
  • Alejandra Matiz
    • 2
  • Luciano Freschi
    • 2
  • Francisco J. Corpas
    • 3
  1. 1.Department of Botany, Biological Sciences CenterUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Botany, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  3. 3.Department of Biochemistry, Cell and Molecular Biology of PlantsEstación Experimental del Zaidín, CSICGranadaSpain

Personalised recommendations