Skip to main content

Experimenting with Trinucleotide Repeats: Facts and Technical Issues

  • Protocol
  • First Online:
Trinucleotide Repeats

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2056))

Abstract

Trinucleotide repeats are a peculiar class of microsatellites involved in many neurological as well as developmental disorders. Their propensity to generate very large expansions over time is supposedly due to their capacity to form specific secondary structures, such as imperfect hairpins, triple helices, or G-quadruplexes. These unusual structures were proposed to trigger expansions in vivo. Here, I review known technical issues linked to these structures, such as slippage during polymerase chain reaction and aberrant migration of long trinucleotide repeats during agarose gel electrophoresis. Our current understanding of interactions between trinucleotide repeat secondary structures and the mismatch-repair machinery is also quickly reviewed, and critical questions relevant to these interactions are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richard G-F, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727

    Article  CAS  Google Scholar 

  2. Brook JD et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808

    Article  CAS  Google Scholar 

  3. Fu Y-H et al (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67:1047–1058

    Article  CAS  Google Scholar 

  4. Fu YH et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256–1258

    Article  CAS  Google Scholar 

  5. McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11:786–799

    Article  CAS  Google Scholar 

  6. Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447:932–940

    Article  CAS  Google Scholar 

  7. Mosbach V, Poggi L, Richard G-F (2018) Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr Genet. https://doi.org/10.1007/s00294-018-0865-1

    Article  Google Scholar 

  8. Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742

    Article  CAS  Google Scholar 

  9. Usdin K, House NC, Freudenreich CH (2015) Repeat instability during DNA repair: insights from model systems. Crit Rev Biochem Mol Biol. https://doi.org/10.3109/10409238.2014.999192

    Article  CAS  Google Scholar 

  10. Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81:533–540

    Article  CAS  Google Scholar 

  11. Mitas M et al (1995) Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucleic Acids Res 23:1050–1059

    Article  CAS  Google Scholar 

  12. Yu A, Mitas M (1995) The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins. Nucleic Acids Res 23:4055–4057

    Article  CAS  Google Scholar 

  13. Yu A et al (1995) The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation. Nucleic Acids Res 23:2706–2714

    Article  CAS  Google Scholar 

  14. Nadel Y, Weisman-Shomer P, Fry M (1995) The fragile X syndrome single strand d(CGG)n nucleotide repeats readily fold back to form unimolecular hairpin structures. J Biol Chem 48:28970–28977

    Article  Google Scholar 

  15. Pinheiro P et al (2002) Structures of CUG repeats in RNA. J Biol Chem 277:35183–35190

    Article  CAS  Google Scholar 

  16. Sobczak K, de Mezer M, Michlewski G, Krol J, Krzyzosiak WJ (2003) RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res 31:5469–5482

    Article  CAS  Google Scholar 

  17. Mariappan SV, Catasti P, Silks LA 3rd, Bradbury EM, Gupta G (1999) The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich’s ataxia. J Mol Biol 285:2035–2052

    Article  CAS  Google Scholar 

  18. Suen IS et al (1999) Structural properties of Friedreich’s ataxia d(GAA) repeats. Biochim Biophys Acta 1444:14–24

    Article  CAS  Google Scholar 

  19. Mirkin SM et al (1987) DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature 330:495–497

    Article  CAS  Google Scholar 

  20. Fojtik P, Vorlickova M (2001) The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH. Nucleic Acids Res 29:4684–4690

    Article  CAS  Google Scholar 

  21. Fry M, Loeb LA (1994) The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A 91:4950–4954

    Article  CAS  Google Scholar 

  22. Pearson CE et al (2002) Slipped-strand DNAs formed by long (CAG)∗(CTG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res 30:4534–4547

    Article  CAS  Google Scholar 

  23. Duzdevich D et al (2011) Unusual structures are present in DNA fragments containing super-long huntingtin CAG repeats. PLoS One 6:e17119

    Article  CAS  Google Scholar 

  24. McMurray CT (1999) DNA secondary structure: a common and causative factor for expansion in human disease. Proc Natl Acad Sci U S A 96:1823–1825

    Article  CAS  Google Scholar 

  25. Larrea AA, Lujan SA, Kunkel TA (2010) SnapShot: DNA mismatch repair. Cell 141:730 e1

    Article  Google Scholar 

  26. Harfe BD, Jinks-Robertson S (2000) Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae. Genetics 156:571–578

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276

    Article  CAS  Google Scholar 

  28. Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA (1997) Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 17:2859–2865

    Article  CAS  Google Scholar 

  29. Mansour AA, Tornier C, Lehmann E, Darmon M, Fleck O (2001) Control of GT repeat stability in Schizosaccharomyces pombe by mismatch repair factors. Genetics 158:77–85

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    Article  CAS  Google Scholar 

  31. Miret JJ, Pessoa-Brandão L, Lahue RS (1998) Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 95:12438–12443

    Article  CAS  Google Scholar 

  32. Miret JJ, Pessoa-Brandao L, Lahue RS (1997) Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae. Mol Cell Biol 17:3382–3387

    Article  CAS  Google Scholar 

  33. Richard G-F, Dujon B, Haber JE (1999) Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol Gen Genet 261:871–882

    Article  CAS  Google Scholar 

  34. Schweitzer JK, Livingston DM (1997) Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast. Hum Mol Genet 6:349–355

    Article  CAS  Google Scholar 

  35. Pearson CE, Ewel A, Acharya S, Fishel RA, Sinden RR (1997) Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum Mol Genet 6:1117–1123

    Article  CAS  Google Scholar 

  36. Owen BA et al (2005) (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nat Struct Mol Biol 12:663–670

    Article  CAS  Google Scholar 

  37. Tian L et al (2009) Mismatch recognition protein MutSbeta does not hijack (CAG)n hairpin repair in vitro. J Biol Chem 284:20452–20456

    Article  CAS  Google Scholar 

  38. Manley K, Shirley TL, Flaherty L, Messer A (1999) Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat Genet 23:471–473

    Article  CAS  Google Scholar 

  39. Savouret C et al (2003) CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J 22:2264–2273

    Article  CAS  Google Scholar 

  40. Tome S et al (2009) MSH2 ATPase domain mutation affects CTG∗CAG repeat instability in transgenic mice. PLoS Genet 5:e1000482

    Article  Google Scholar 

  41. Williams GM, Surtees JA (2015) MSH3 promotes dynamic behavior of trinucleotide repeat tracts in vivo. Genetics 200:737–754

    Article  Google Scholar 

  42. Viterbo D, Michoud G, Mosbach V, Dujon B, Richard G-F (2016) Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. DNA Repair 42:94–106

    Article  CAS  Google Scholar 

  43. Lokanga RA, Zhao XN, Usdin K (2014) The mismatch repair protein MSH2 is rate limiting for repeat expansion in a fragile X premutation mouse model. Hum Mutat 35:129–136

    Article  CAS  Google Scholar 

  44. Ezzatizadeh V et al (2012) The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model. Neurobiol Dis 46:165–171

    Article  CAS  Google Scholar 

  45. Dandelot E, Gourdon G (2018) The flash-small-pool PCR: how to transform blotting and numerous hybridization steps into a simple denatured PCR. BioTechniques 64:262–265

    Article  CAS  Google Scholar 

  46. Gomes-Pereira M, Bidichandani SI, Monckton DG (2004) Analysis of unstable triplet repeats using small-pool polymerase chain reaction. In: Kohwi Y (ed) Trinucleotide repeat protocols. Humana Press, New York, pp 61–76. https://doi.org/10.1385/1-59259-804-8:061

    Chapter  Google Scholar 

  47. Tome S, Nicole A, Gomes-Pereira M, Gourdon G (2014) Non-radioactive detection of trinucleotide repeat size variability. PLoS Curr 6. PLOS Currents Muscular Dystrophy https://doi.org/10.1371/currents.md.ad50113b899fa1352ce70c087eead706

  48. Cummins JH (1997) The unique alteration of electrophoretic mobility of fragile-X-expanded fragments in the presence of ethidium bromide. Tech Tips Online 2:84–86

    Article  Google Scholar 

  49. Gomes-Pereira M, Monckton DG (2017) Ethidium bromide modifies the agarose electrophoretic mobility of CAG·CTG alternative DNA structures generated by PCR. Front Cell Neurosci 11:153

    Article  Google Scholar 

  50. Sakamoto N et al (1999) Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol Cell 3:465–475

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in my lab is generously supported by the Centre National de la Recherche Scientifique (CNRS) and by the Institut Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy-Franck Richard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Richard, GF. (2020). Experimenting with Trinucleotide Repeats: Facts and Technical Issues. In: Richard, GF. (eds) Trinucleotide Repeats. Methods in Molecular Biology, vol 2056. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9784-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9784-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9783-1

  • Online ISBN: 978-1-4939-9784-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics