Advertisement

Overview of Tissue Imaging Methods

  • Sanjay S. Patel
  • Scott J. RodigEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2055)

Abstract

The rapidly evolving fields of precision medicine and immuno-oncology are together driving an increasing need for detailed investigation of the tumor immune microenvironment (TIME) in a variety of solid tumors and hematologic neoplasms. The development of targeted therapies that may be efficacious in reprogramming the host immune response to recognize and eliminate tumor cells requires accurate identification of the various inflammatory cells and the spatial relationships between them within the TIME. While currently established techniques enable diagnostic pathologists to routinely interrogate for up to two protein markers and evaluate their expression by visual examination, there is a growing need to reliably query many more targets (i.e., multiplexing) simultaneously in a given tissue specimen, in order to more precisely characterize and distinguish the TIMEs between different tumor types, and between patients. Several technologies aimed at achieving these goals, including multiplex colorimetric immunohistochemistry (mCIHC), multiplex immunofluorescence (mIF), cyclic immunofluorescence (CycIF), multiplexed ion beam imaging (MIBI), codetection by indexing (CODEX), and digital spatial profiling (DSP), are discussed.

Key words

Immuno-oncology Immune microenvironment Multiplex imaging Immunofluorescence Immunohistochemistry 

References

  1. 1.
    Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571.  https://doi.org/10.1038/nature13954CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Herbst RS, Soria J-C, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567.  https://doi.org/10.1038/nature14011CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028.  https://doi.org/10.1056/NEJMoa1501824CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319.  https://doi.org/10.1056/NEJMoa1411087CrossRefPubMedGoogle Scholar
  5. 5.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454.  https://doi.org/10.1056/NEJMoa1200690CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515(7528):558–562.  https://doi.org/10.1038/nature13904CrossRefPubMedGoogle Scholar
  7. 7.
    Nakane PK, Pierce GB (1966) Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem 14(12):929–931.  https://doi.org/10.1177/14.12.929CrossRefPubMedGoogle Scholar
  8. 8.
    Nakane PK (1968) Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem 16(9):557–560.  https://doi.org/10.1177/16.9.557CrossRefPubMedGoogle Scholar
  9. 9.
    Levenson RM, Mansfield JR (2006) Multispectral imaging in biology and medicine: slices of life. Cytometry A 69(8):748–758.  https://doi.org/10.1002/cyto.a.20319CrossRefPubMedGoogle Scholar
  10. 10.
    Remark R, Merghoub T, Grabe N et al (2016) In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci Immunol 1(1):aaf6925.  https://doi.org/10.1126/sciimmunol.aaf6925CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stack EC, Wang C, Roman KA, Hoyt CC (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70(1):46–58.  https://doi.org/10.1016/j.ymeth.2014.08.016CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Carey CD, Gusenleitner D, Lipschitz M et al (2017) Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood 130(22):2420–2430.  https://doi.org/10.1182/blood-2017-03-770719CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lin J-R, Fallahi-Sichani M, Sorger PK (2015) Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat Commun 6:8390.  https://doi.org/10.1038/ncomms9390CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lin J-R, Fallahi-Sichani M, Chen J-Y, Sorger PK (2016) Cyclic immunofluorescence (CycIF), a highly multiplexed method for single-cell imaging. Curr Protoc Chem Biol 8(4):251–264.  https://doi.org/10.1002/cpch.14CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lin J-R, Izar B, Wang S et al (2018) Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife 7.  https://doi.org/10.7554/eLife.31657
  16. 16.
    Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822.  https://doi.org/10.1021/ac901049wCrossRefPubMedGoogle Scholar
  17. 17.
    Lou X, Zhang G, Herrera I et al (2007) Polymer-based elemental tags for sensitive bioassays. Angew Chem Int Ed Engl 46(32):6111–6114.  https://doi.org/10.1002/anie.200700796CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Angelo M, Bendall SC, Finck R et al (2014) Multiplexed ion beam imaging of human breast tumors. Nat Med 20(4):436–442.  https://doi.org/10.1038/nm.3488CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lechene C, Hillion F, McMahon G et al (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5(6):20.  https://doi.org/10.1186/jbiol42CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Giesen C, Wang HAO, Schapiro D et al (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11(4):417–422.  https://doi.org/10.1038/nmeth.2869CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Keren L, Bosse M, Marquez D et al (2018) A structured tumor-immune microenvironment in triple negative breast Cancer revealed by multiplexed ion beam imaging. Cell 174(6):1373–1387.e19.  https://doi.org/10.1016/j.cell.2018.08.039CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Goltsev Y, Samusik N, Kennedy-Darling J et al (2018) Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174(4):968–981.e15.  https://doi.org/10.1016/j.cell.2018.07.010CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Pathology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations