Advertisement

Mouse Models for Use in Cryptosporidium Infection Studies and Quantification of Parasite Burden Using Flow Cytometry, qPCR, and Histopathology

  • Karine Sonzogni-Desautels
  • Jan R. Mead
  • Momar NdaoEmail author
Protocol
  • 394 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2052)

Abstract

Cryptosporidiosis threatens life of young children in developing countries and newborn calves around the world. No vaccine or therapy can prevent or cure this diarrhea-inducing enteric disease caused by Cryptosporidium spp. protozoan parasites. There is an essential need to discover new therapeutic drugs efficient in reducing parasite burden in infected individuals. Research therefore relies on reliable small animal models of cryptosporidiosis. Here, we present excellent mouse models which can efficiently mimic pathogenesis of human and bovine cryptosporidiosis. We also describe methods to purify C. parvum oocysts from stool and intestine of infected mice to facilitate oocyst quantification. Moreover, we present protocols using flow cytometry, quantitative polymerase chain reaction, and histopathology to accurately quantify parasite burden in stool or intestine samples.

Keywords

Cryptosporidium parvum Oocysts Interferon gamma knock-out mice Interferon gamma receptor knock-out mice IL-12 knock-out mice SCID mice Flow cytometry Quantitative polymerase chain reaction Histopathology 

References

  1. 1.
    Fayer R, Xiao L (eds) (2007) Cryptosporidium and cryptosporidiosis, 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  2. 2.
    Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acacio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382(9888):209–222.  https://doi.org/10.1016/S0140-6736(13)60844-2CrossRefPubMedGoogle Scholar
  3. 3.
    Sow SO, Muhsen K, Nasrin D, Blackwelder WC, Wu Y, Farag TH, Panchalingam S, Sur D, Zaidi AK, Faruque AS, Saha D, Adegbola R, Alonso PL, Breiman RF, Bassat Q, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ahmed S, Qureshi S, Quadri F, Hossain A, Das SK, Antonio M, Hossain MJ, Mandomando I, Nhampossa T, Acacio S, Omore R, Oundo JO, Ochieng JB, Mintz ED, O’Reilly CE, Berkeley LY, Livio S, Tennant SM, Sommerfelt H, Nataro JP, Ziv-Baran T, Robins-Browne RM, Mishcherkin V, Zhang J, Liu J, Houpt ER, Kotloff KL, Levine MM (2016) The burden of Cryptosporidium diarrheal disease among children <24 months of age in moderate/high mortality regions of Sub-Saharan Africa and South Asia, utilizing data from the Global Enteric Multicenter Study (GEMS). PLoS Negl Trop Dis 10(5):e0004729.  https://doi.org/10.1371/journal.pntd.0004729CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jakobi V, Petry F (2008) Humoral immune response in IL-12 and IFN-gamma deficient mice after infection with Cryptosporidium parvum. Parasite Immunol 30(3):151–161CrossRefGoogle Scholar
  5. 5.
    Ndao M, Nath-Chowdhury M, Sajid M, Marcus V, Mashiyama ST, Sakanari J, Chow E, Mackey Z, Land KM, Jacobson MP, Kalyanaraman C, McKerrow JH, Arrowood MJ, Caffrey CR (2013) A cysteine protease inhibitor rescues mice from a lethal Cryptosporidium parvum infection. Antimicrob Agents Chemother 57(12):6063–6073.  https://doi.org/10.1128/AAC.00734-13CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sonzogni-Desautels K, Renteria Flores A, Vasquez Camargo F, Di Lenardo TZ, Mikhail A, Arrowood MJ, Fortin A, Ndao M (2015) Oleylphosphocholine (OlPC) arrests Cryptosporidium parvum growth in vitro and prevents lethal infection in interferon gamma receptor knock-out mice. Front Microbiol 6:973.  https://doi.org/10.3389/fmicb.2015.00973CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tessema TS, Schwamb B, Lochner M, Forster I, Jakobi V, Petry F (2009) Dynamics of gut mucosal and systemic Th1/Th2 cytokine responses in interferon-gamma and interleukin-12p40 knock out mice during primary and challenge Cryptosporidium parvum infection. Immunobiology 214(6):454–466CrossRefGoogle Scholar
  8. 8.
    von Oettingen J, Nath-Chowdhury M, Ward BJ, Rodloff AC, Arrowood MJ, Ndao M (2008) High-yield amplification of Cryptosporidium parvum in interferon gamma receptor knockout mice. Parasitology 135(10):1151–1156CrossRefGoogle Scholar
  9. 9.
    Basha S, Surendran N, Pichichero M (2014) Immune responses in neonates. Expert Rev Clin Immunol 10(9):1171–1184.  https://doi.org/10.1586/1744666X.2014.942288CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Delaunay A, Gargala G, Li X, Favennec L, Ballet JJ (2000) Quantitative flow cytometric evaluation of maximal Cryptosporidium parvum oocyst infectivity in a neonate mouse model. Appl Environ Microbiol 66(10):4315–4317CrossRefGoogle Scholar
  11. 11.
    Blagburn BL, Sundermann CA, Lindsay DS, Hall JE, Tidwell RR (1991) Inhibition of Cryptosporidium parvum in neonatal Hsd:(ICR)BR Swiss mice by polyether ionophores and aromatic amidines. Antimicrob Agents Chemother 35:1520–1523CrossRefGoogle Scholar
  12. 12.
    Theodos CM, Sullivan KL, Griffiths JK, Tzipori S (1997) Profiles of healing and nonhealing Cryptosporidium parvum infection in C57BL/6 mice with functional B and T lymphocytes: the extent of gamma interferon modulation determines the outcome of infection. Infect Immun 65(11):4761–4769CrossRefGoogle Scholar
  13. 13.
    You X, Mead JR (1998) Characterization of experimental Cryptosporidium parvum infection in IFN-gamma knockout mice. Parasitology 117(6):525–531CrossRefGoogle Scholar
  14. 14.
    Campbell LD, Stewart JN, Mead JR (2002) Susceptibility to Cryptosporidium parvum infections in cytokine- and chemokine-receptor knockout mice. J Parasitol 88(5):1014–1016CrossRefGoogle Scholar
  15. 15.
    Urban JF Jr, Fayer R, Chen SJ, Gause WC, Gately MK, Finkelman FD (1996) IL-12 protects immunocompetent and immunodeficient neonatal mice against infection with Cryptosporidium parvum. J Immunol 156(1):263–268PubMedGoogle Scholar
  16. 16.
    Lemieux MW, Sonzogni-Desautels K, Ndao M (2017) Lessons learned from protective immune responses to optimize vaccines against cryptosporidiosis. Pathogens 7(1):E2.  https://doi.org/10.3390/pathogens7010002CrossRefPubMedGoogle Scholar
  17. 17.
    Love MS, Beasley FC, Jumani RS, Wright TM, Chatterjee AK, Huston CD, Schultz PG, McNamara CW (2017) A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Negl Trop Dis 11(2):e0005373.  https://doi.org/10.1371/journal.pntd.0005373CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zambriski JA, Nydam DV, Bowman DD, Bellosa ML, Burton AJ, Linden TC, Liotta JL, Ollivett TL, Tondello-Martins L, Mohammed HO (2013) Description of fecal shedding of Cryptosporidium parvum oocysts in experimentally challenged dairy calves. Parasitol Res 112(3):1247–1254.  https://doi.org/10.1007/s00436-012-3258-2CrossRefPubMedGoogle Scholar
  19. 19.
    Zambriski JA, Nydam DV, Wilcox ZJ, Bowman DD, Mohammed HO, Liotta JL (2013) Cryptosporidium parvum: determination of ID50 and the dose-response relationship in experimentally challenged dairy calves. Vet Parasitol 197(1–2):104–112.  https://doi.org/10.1016/j.vetpar.2013.04.022CrossRefPubMedGoogle Scholar
  20. 20.
    Heine J, Moon HW, Woodmansee DB (1984) Persistent Cryptosporidium infection in congenitally athymic (nude) mice. Infect Immun 43:856–859CrossRefGoogle Scholar
  21. 21.
    Mead JR, Arrowood MJ, Sidwell RW, Healey MC (1991) Chronic Cryptosporidium parvum infections in congenitally immunodeficient SCID and nude mice. J Infect Dis 163(6):1297–1304CrossRefGoogle Scholar
  22. 22.
    McDonald V, Deer R, Uni S, Iseki M, Bancroft GJ (1992) Immune responses to Cryptosporidium muris and Cryptosporidium parvum in adult immunocompetent or immunocompromised (nude and SCID) mice. Infect Immun 60(8):3325–3331CrossRefGoogle Scholar
  23. 23.
    Jumani RS, Bessoff K, Love MS, Miller P, Stebbins EE, Teixeira JE, Campbell MA, Meyers MJ, Zambriski JA, Nunez V, Woods AK, McNamara CW, Huston CD (2018) A novel piperazine-based drug lead for cryptosporidiosis from the medicines for malaria venture open-access malaria box. Antimicrob Agents Chemother 62(4):e01505-17.  https://doi.org/10.1128/AAC.01505-17CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Arrowood MJ, Hurd MR, Mead JR (1995) A new method for evaluating experimental cryptosporidial parasite loads using immunofluorescent flow cytometry. J Parasitol 81(3):404–409CrossRefGoogle Scholar
  25. 25.
    Delling C, Holzhausen I, Daugschies A, Lendner M (2016) Inactivation of Cryptosporidium parvum under laboratory conditions. Parasitol Res 115(2):863–866.  https://doi.org/10.1007/s00436-015-4813-4CrossRefPubMedGoogle Scholar
  26. 26.
    Fujino T, Matsui T, Kobayashi F, Haruki K, Yoshino Y, Kajima J, Tsuji M (2002) The effect of heating against Cryptosporidium oocysts. J Vet Med Sci 64(3):199–200CrossRefGoogle Scholar
  27. 27.
    Chen F, Huang K, Qin S, Zhao Y, Pan C (2007) Comparison of viability and infectivity of Cryptosporidium parvum oocysts stored in potassium dichromate solution and chlorinated tap water. Vet Parasitol 150(1–2):13–17.  https://doi.org/10.1016/j.vetpar.2007.09.001CrossRefPubMedGoogle Scholar
  28. 28.
    Yang S, Healey MC, Du C (1996) Infectivity of preserved Cryptosporidium parvum oocysts for immunosuppressed adult mice. FEMS Immunol Med Microbiol 13(2):141–145.  https://doi.org/10.1016/0928-8244(95)00096-8CrossRefPubMedGoogle Scholar
  29. 29.
    Barbosa JM, Costa-de-Oliveira S, Rodrigues AG, Hanscheid T, Shapiro H, Pina-Vaz C (2008) A flow cytometric protocol for detection of Cryptosporidium spp. Cytometry A 73(1):44–47.  https://doi.org/10.1002/cyto.a.20502CrossRefPubMedGoogle Scholar
  30. 30.
    Shahiduzzaman M, Dyachenko V, Keidel J, Schmaschke R, Daugschies A (2010) Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions. Vet Parasitol 167(1):43–49.  https://doi.org/10.1016/j.vetpar.2009.09.042CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Karine Sonzogni-Desautels
    • 1
    • 2
  • Jan R. Mead
    • 3
    • 4
  • Momar Ndao
    • 1
    • 2
    • 5
    Email author
  1. 1.National Reference Centre for Parasitology, Research Institute of the McGill University Health CentreMontrealCanada
  2. 2.Infectious Diseases and Immunity in Global Health ProgramResearch Institute of the McGill University Health CentreMontrealCanada
  3. 3.Atlanta Veterans Affairs Medical CenterDecaturUSA
  4. 4.Emory University School of MedicineDepartment of PediatricsAtlantaUSA
  5. 5.Division of Infectious Diseases, Department of Medicine, Faculty of MedicineMcGill UniversityMontrealCanada

Personalised recommendations