Advertisement

Advanced Methods for the Analysis of Altered Pre-mRNA Splicing in Yeast and Disease

  • Huw B. Thomas
  • Raymond T. O’KeefeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2049)

Abstract

Splicing of pre-messenger RNA (pre-mRNA) transcripts is a fundamental process in all eukaryotes that provides a mechanism of increasing the proteomic diversity within a cell that can be tightly regulated in a dynamic manner. While constitutive and alternative splicing are necessary for the correct development and regulation of cells/organisms, aberrant splicing is now associated with an increasingly varied number of human diseases, such as neurological and developmental diseases, and cancer. Studies of splicing mechanisms and regulation are often achieved in nonhuman model organisms such as yeast. Yeasts possess homologs to many of the core spliceosome components of higher organisms, including humans, and as such yeast species are now a well-established model organism for understanding how differential splicing of transcripts can alter the phenotype of a cell or organism. Here we describe methods to investigate pre-mRNA splicing in yeast cells using modern RNA-Seq technology and bioinformatics software. Details of traditional validation methods are also described.

Key words

Pre-mRNA splicing Spliceosome RNA-Seq Yeast 

References

  1. 1.
    Will CL, Lührmann R (2011) Spliceosome structure and function. TL - 3. Cold Spring Harb Perspect Biol 3:1–23.  https://doi.org/10.1101/cshperspect.a003707CrossRefGoogle Scholar
  2. 2.
    Wright HL, Thomas HB, Moots RJ, Edwards SW (2013) RNA-Seq reveals activation of both common and cytokine-specific pathways following neutrophil priming. PLoS One 8(3):e58598.  https://doi.org/10.1371/journal.pone.0058598CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wright HL, Thomas HB, Moots RJ, Edwards SW (2014) Interferon gene expression signature in rheumatoid arthritis neutrophils correlates with a good response to TNFi therapy. Rheumatol (Oxford) 54:188–193.  https://doi.org/10.1093/rheumatology/keu299CrossRefGoogle Scholar
  4. 4.
    Wieczorek D, Newman WG, Wieland T et al (2014) Compound Heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes burn-McKeown syndrome. Am J Hum Genet 95:698–707.  https://doi.org/10.1016/j.ajhg.2014.10.014CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lines MA, Huang L, Schwartzentruber J et al (2012) Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly. Am J Hum Genet 90:369–377.  https://doi.org/10.1016/j.ajhg.2011.12.023CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bacrot S, Doyard M, Huber C et al (2015) Mutations in SNRPB, encoding components of the core splicing machinery, cause cerebro-costo-mandibular syndrome. Hum Mutat 36:187–190.  https://doi.org/10.1002/humu.22729CrossRefPubMedGoogle Scholar
  7. 7.
    Tan Q, Yalamanchili HK, Park J et al (2016) Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Hum Mol Genet 25:5083–5093.  https://doi.org/10.1093/hmg/ddw337CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen K, Xiao H, Zeng J et al (2017) Alternative splicing of EZH2 pre-mRNA by SF3B3 contributes to the tumorigenic potential of renal cancer. Clin Cancer Res 23:3428–3441.  https://doi.org/10.1158/1078-0432.CCR-16-2020CrossRefPubMedGoogle Scholar
  9. 9.
    Frazer LN, Nancollis V, O’Keefe RT (2008) The role of Snu114p during pre-mRNA splicing. Biochem Soc Trans 36:551–553.  https://doi.org/10.1042/BST0360551CrossRefPubMedGoogle Scholar
  10. 10.
    Grainger RJ, Beggs JD (2005) Prp8 protein: at the heart of the spliceosome. RNA 11:533–557.  https://doi.org/10.1261/rna.2220705CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hahn D, Beggs JD (2010) Brr2p RNA helicase with a split personality: insights into structure and function: figure 1. Biochem Soc Trans 38:1105–1109.  https://doi.org/10.1042/BST0381105CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao C, Bellur DL, Lu S et al (2009) Autosomal-dominant retinitis Pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 85:617–627.  https://doi.org/10.1016/j.ajhg.2009.09.020CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Towns KV, Kipioti A, Long V et al (2010) Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum Mutat 31:1361–1376.  https://doi.org/10.1002/humu.21236CrossRefGoogle Scholar
  14. 14.
    O’Keefe RT, Beggs JD (2012) Yeast genetics to investigate the function of core pre-mRNA splicing factors, Alternative pre-mRNA splicing: theory and protocols. Wiley-Blackwell, Boston, pp 428–436Google Scholar
  15. 15.
    Janke C, Magiera MM, Rathfelder N et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962.  https://doi.org/10.1002/yea.1142CrossRefPubMedGoogle Scholar
  16. 16.
    Lehalle D, Wieczorek D, Zechi-Ceide RM et al (2015) A review of craniofacial disorders caused by spliceosomal defects. Clin Genet 88:405–415.  https://doi.org/10.1111/cge.12596CrossRefPubMedGoogle Scholar
  17. 17.
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics 1Google Scholar
  18. 18.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dobin A, Davis CA, Schlesinger F et al (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21.  https://doi.org/10.1093/bioinformatics/bts635CrossRefGoogle Scholar
  20. 20.
    Anders S, Pyl PT, Huber W (2015) HTSeq-A python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169.  https://doi.org/10.1093/bioinformatics/btu638CrossRefGoogle Scholar
  21. 21.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550.  https://doi.org/10.1186/s13059-014-0550-8CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Howe EA, Sinha R, Schlauch D, Quackenbush J (2011) RNA-Seq analysis in MeV. Bioinformatics 27:3209–3210.  https://doi.org/10.1093/bioinformatics/btr490CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK

Personalised recommendations