Advertisement

Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges

  • Yu Chen
  • Gang Li
  • Jens NielsenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2049)

Abstract

Genome-scale metabolic models (GEMs) are mathematical models that enable systematic analysis of metabolism. This modeling concept has been applied to study the metabolism of many organisms including the eukaryal model organism, the yeast Saccharomyces cerevisiae, that also serves as an important cell factory for production of fuels and chemicals. With the application of yeast GEMs, our knowledge of metabolism is increasing. Therefore, GEMs have also been used for modeling human cells to study metabolic diseases. Here we introduce the concept of GEMs and provide a protocol for reconstructing GEMs. Besides, we show the historic development of yeast GEMs and their applications. Also, we review human GEMs as well as their uses in the studies of complex diseases.

Key words

Biomarker Drug target Genome-scale metabolic models Human cells Metabolic engineering Saccharomyces cerevisiae Systems biology Yeast 

References

  1. 1.
    Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274:17410–17416CrossRefGoogle Scholar
  2. 2.
    King ZA et al (2016) BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–D522.  https://doi.org/10.1093/nar/gkv1049CrossRefPubMedGoogle Scholar
  3. 3.
    O'Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987.  https://doi.org/10.1016/j.cell.2015.05.019CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang C, Hua Q (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front Physiol 6:413.  https://doi.org/10.3389/fphys.2015.00413CrossRefPubMedGoogle Scholar
  5. 5.
    Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120.  https://doi.org/10.1038/nrg3643CrossRefPubMedGoogle Scholar
  6. 6.
    Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121.  https://doi.org/10.1038/nprot.2009.203CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9:e1002980.  https://doi.org/10.1371/journal.pcbi.1002980CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361.  https://doi.org/10.1093/nar/gkw1092CrossRefPubMedGoogle Scholar
  9. 9.
    Goffeau A et al (1996) Life with 6000 genes. Science 274(546):563–547Google Scholar
  10. 10.
    Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253.  https://doi.org/10.1101/gr.234503CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54.  https://doi.org/10.1186/gb-2003-4-9-r54CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Heavner BD, Price ND (2015) Comparative analysis of yeast metabolic network models highlights progress, opportunities for metabolic reconstruction. PLoS Comput Biol 11:e1004530.  https://doi.org/10.1371/journal.pcbi.1004530CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Osterlund T, Nookaew I, Bordel S, Nielsen J (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 7:36.  https://doi.org/10.1186/1752-0509-7-36CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309.  https://doi.org/10.1101/gr.2250904CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Herrgard MJ et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160.  https://doi.org/10.1038/nbt1492CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nookaew I et al (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71.  https://doi.org/10.1186/1752-0509-2-71CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mo ML, Palsson BO, Herrgard MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37.  https://doi.org/10.1186/1752-0509-3-37CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dobson PD et al (2010) Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol 4:145.  https://doi.org/10.1186/1752-0509-4-145CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Aung HW, Henry SA, Walker LP (2013) Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol (New Rochelle NY) 9:215–228.  https://doi.org/10.1089/ind.2013.0013CrossRefGoogle Scholar
  20. 20.
    Heavner BD, Smallbone K, Price ND, Walker LP (2013) Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database (Oxford) 2013:bat059.  https://doi.org/10.1093/database/bat059CrossRefGoogle Scholar
  21. 21.
    Kuepfer L, Sauer U, Blank LM (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 15:1421–1430.  https://doi.org/10.1101/gr.3992505CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zomorrodi AR, Maranas CD (2010) Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol 4:178.  https://doi.org/10.1186/1752-0509-4-178CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP (2012) Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6:55.  https://doi.org/10.1186/1752-0509-6-55CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nookaew I, Olivares-Hernandez R, Bhumiratana S, Nielsen J (2011) Genome-scale metabolic models of Saccharomyces cerevisiae. Methods Mol Biol 759:445–463.  https://doi.org/10.1007/978-1-61779-173-4_25CrossRefPubMedGoogle Scholar
  25. 25.
    Meadows AL et al (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–69+.  https://doi.org/10.1038/nature19769CrossRefPubMedGoogle Scholar
  26. 26.
    Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34:135–141.  https://doi.org/10.1016/j.copbio.2014.12.019CrossRefPubMedGoogle Scholar
  27. 27.
    Chae TU, Choi SY, Kim JW, Ko YS, Lee SY (2017) Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 47:67–82.  https://doi.org/10.1016/j.copbio.2017.06.007CrossRefPubMedGoogle Scholar
  28. 28.
    Ng CY, Jung MY, Lee J, Oh MK (2012) Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Factories 11:68.  https://doi.org/10.1186/1475-2859-11-68CrossRefGoogle Scholar
  29. 29.
    Borodina I et al (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine. Metab Eng 27:57–64.  https://doi.org/10.1016/j.ymben.2014.10.003CrossRefGoogle Scholar
  30. 30.
    Quarterman J, Kim SR, Kim PJ, Jin YS (2015) Enhanced hexose fermentation by Saccharomyces cerevisiae through integration of stoichiometric modeling and genetic screening. J Biotechnol 194:48–57.  https://doi.org/10.1016/j.jbiotec.2014.11.017CrossRefPubMedGoogle Scholar
  31. 31.
    Xu GQ, Zou W, Chen XL, Xu N, Liu LM, Chen J (2012) Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. PLoS One 7:e52086.  https://doi.org/10.1371/journal.pone.0052086CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS (2014) Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol 98:8155–8164.  https://doi.org/10.1007/s00253-014-5895-0CrossRefPubMedGoogle Scholar
  33. 33.
    Suastegui M et al (2017) Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab Eng 42:134–144.  https://doi.org/10.1016/j.ymben.2017.06.008CrossRefPubMedGoogle Scholar
  34. 34.
    Agren R, Otero JM, Nielsen J (2013) Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J Ind Microbiol Biotechnol 40:735–747.  https://doi.org/10.1007/s10295-013-1269-3CrossRefPubMedGoogle Scholar
  35. 35.
    Sun Z, Meng H, Li J, Wang J, Li Q, Wang Y, Zhang Y (2014) Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces cerevisiae. PLoS One 9:e112615.  https://doi.org/10.1371/journal.pone.0112615CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJJ (2015) Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Factories 14:73.  https://doi.org/10.1186/s12934-015-0252-2CrossRefGoogle Scholar
  37. 37.
    Kildegaard KR et al (2016) Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Factories 15:53.  https://doi.org/10.1186/s12934-016-0451-5CrossRefGoogle Scholar
  38. 38.
    Chen Y, Nielsen J (2016) Flux control through protein phosphorylation in yeast. FEMS Yeast Res 16:fow096.  https://doi.org/10.1093/femsyr/fow096CrossRefGoogle Scholar
  39. 39.
    Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102:2685–2689.  https://doi.org/10.1073/pnas.0406811102CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chumnanpuen P, Zhang J, Nookaew I, Nielsen J (2012) Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast. Mol Gen Genomics 287:541–554.  https://doi.org/10.1007/s00438-012-0697-5CrossRefGoogle Scholar
  41. 41.
    Chumnanpuen P, Nookaew I, Nielsen J (2013) Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC Syst Biol 7:S7.  https://doi.org/10.1186/1752-0509-7-S3-S7CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Alff-Tuomala S et al (2016) Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol 100:969–985.  https://doi.org/10.1007/s00253-015-7038-7CrossRefPubMedGoogle Scholar
  43. 43.
    de Jong BW, Siewers V, Nielsen J (2016) Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters. FEMS Yeast Res 16:fov105.  https://doi.org/10.1093/femsyr/fov105CrossRefPubMedGoogle Scholar
  44. 44.
    Schulz JC, Zampieri M, Wanka S, von Mering C, Sauer U (2014) Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. Sci Signal 7:rs6.  https://doi.org/10.1126/scisignal.2005602CrossRefPubMedGoogle Scholar
  45. 45.
    Salehzadeh-Yazdi A, Asgari Y, Saboury AA, Masoudi-Nejad A (2014) Computational analysis of reciprocal association of metabolism and epigenetics in the budding yeast: a genome-scale metabolic model (GSMM) approach. PLoS One 9:e111686.  https://doi.org/10.1371/journal.pone.0111686CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Song HS, Reifman J, Wallqvist A (2014) Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle. PLoS One 9:e112524.  https://doi.org/10.1371/journal.pone.0112524CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chen Y, Wang YH, Nielsen J (2017) Systematic inference of functional phosphorylation events in yeast metabolism. Bioinformatics 33:1995–2001.  https://doi.org/10.1093/bioinformatics/btx110CrossRefPubMedGoogle Scholar
  48. 48.
    Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjonsson OE, Palsson BO (2017) Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci Rep 7:46249.  https://doi.org/10.1038/srep46249CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hackett SR et al (2016) Systems-level analysis of mechanisms regulating yeast metabolic flux. Science 354:aaf2786.  https://doi.org/10.1126/science.aaf2786CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U (2012) Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8:623.  https://doi.org/10.1038/msb.2012.55CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bordel S, Agren R, Nielsen J (2010) Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput Biol 6:e1000859.  https://doi.org/10.1371/journal.pcbi.1000859CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Martinez JL, Bordel S, Hong KK, Nielsen J (2014) Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect in Saccharomyces cerevisiae and explaining evolutionary trade-offs of adaptation to galactose through systems biology. FEMS Yeast Res 14:654–662.  https://doi.org/10.1111/1567-1364.12153CrossRefPubMedGoogle Scholar
  53. 53.
    Caspeta L et al (2014) Altered sterol composition renders yeast thermotolerant. Science 346:75–78.  https://doi.org/10.1126/science.1258137CrossRefPubMedGoogle Scholar
  54. 54.
    Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351.  https://doi.org/10.1126/science.1058040CrossRefPubMedGoogle Scholar
  55. 55.
    Duarte NC et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782.  https://doi.org/10.1073/pnas.0610772104CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ma HW, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135.  https://doi.org/10.1038/msb4100177CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:e1002518.  https://doi.org/10.1371/journal.pcbi.1002518CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:3083.  https://doi.org/10.1038/ncomms4083CrossRefGoogle Scholar
  59. 59.
    Thiele I et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–41+.  https://doi.org/10.1038/nbt.2488CrossRefGoogle Scholar
  60. 60.
    Uhlen M et al (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28:1248–1250.  https://doi.org/10.1038/nbt1210-1248CrossRefPubMedGoogle Scholar
  61. 61.
    Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26:1003–1010.  https://doi.org/10.1038/nbt.1487CrossRefGoogle Scholar
  62. 62.
    Uhlen M et al (2015) Tissue-based map of the human proteome. Science 347:1260419.  https://doi.org/10.1126/science.1260419CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J (2014) Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol 10.  https://doi.org/10.1002/msb.145122
  64. 64.
    Yizhak K et al (2014) Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. elife 3:e03641.  https://doi.org/10.7554/eLife.03641CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Varemo L et al (2016) Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes (vol. 11, p. 921, 2015). Cell Rep 14:1567–1567.  https://doi.org/10.1016/j.celrep.2016.01.054CrossRefPubMedGoogle Scholar
  66. 66.
    Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501.  https://doi.org/10.1038/msb.2011.35CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Buchel F, Saliger S, Drager A, Hoffmann S, Wrzodek C, Zell A, Kahle PJ (2013) Parkinson’s disease: dopaminergic nerve cell model is consistent with experimental finding of increased extracellular transport of alpha-synuclein. BMC Neurosci 14:136.  https://doi.org/10.1186/1471-2202-14-136CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rabinovich S et al (2015) Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527:379–37+.  https://doi.org/10.1038/nature15529CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Mardinoglu A et al (2013) Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol 9:649.  https://doi.org/10.1038/msb.2013.5CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Shlomi T, Cabili MN, Ruppin E (2009) Predicting metabolic biomarkers of human inborn errors of metabolism. Mol Syst Biol 5:263.  https://doi.org/10.1038/msb.2009.22CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gatto F et al (2016) Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep 15:1822–1836.  https://doi.org/10.1016/j.celrep.2016.04.056CrossRefPubMedGoogle Scholar
  72. 72.
    Lerman JA et al (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3:929.  https://doi.org/10.1038/ncomms1928CrossRefPubMedGoogle Scholar
  73. 73.
    O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO (2013) Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol 9:693.  https://doi.org/10.1038/msb.2013.52CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Feizi A, Osterlund T, Petranovic D, Bordel S, Nielsen J (2013) Genome-scale modeling of the protein secretory machinery in yeast. PLoS One 8:e63284.  https://doi.org/10.1371/journal.pone.0063284CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sanchez BJ, Zhang C, Nilsson A, Lahtvee PJ, Kerkhoven EJ, Nielsen J (2017) Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol 13:935.  https://doi.org/10.15252/msb.20167411CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
  2. 2.Novo Nordisk Foundation Center for BiosustainabilityChalmers University of TechnologyGothenburgSweden
  3. 3.Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations