Advertisement

Rational Design and Methods of Analysis for the Study of Short- and Long-Term Dynamic Responses of Eukaryotic Systems

  • Duygu DikiciogluEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2049)

Abstract

The dynamics of eukaryotic systems provide us with a signature of their response to stress, perturbations, or sustained, cyclic, or periodic variations and fluctuations. Studying the dynamic behavior of such systems is therefore elemental in achieving a mechanistic understanding of cellular behavior. This conceptual chapter discusses some of the key aspects that need to be considered in the study of dynamic responses of eukaryotic systems, in particular of eukaryotic networks. However, it does not aim to provide an exhaustive evaluation of the existing methodologies. The discussions in the chapter primarily relate to the cellular networks of eukaryotes and essentially leave higher dynamic community structures such as social networks, epidemic spreading, or ecological networks out of the scope of this argument.

Key words

Cellular networks Physical interaction Genetic interaction Functional association Time series datasets Transient network structure inference Transient data analysis Dynamic network analysis Network dynamics 

References

  1. 1.
    Komurov K, White M (2007) Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Mol Syst Biol 3:110.  https://doi.org/10.1038/msb4100149CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Henson MA (2003) Dynamic modeling of microbial cell populations. Curr Opin Biotechnol 14:460–467CrossRefGoogle Scholar
  3. 3.
    van Riel NAW (2006) Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinform 7:364–374.  https://doi.org/10.1093/bib/bbl040CrossRefPubMedGoogle Scholar
  4. 4.
    Ellner S, Guckenheimer J (2013) Dynamic models in biology. Princeton University Press, Princeton, NJGoogle Scholar
  5. 5.
    Bar-Joseph Z, Gitter A, Simon I (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet 13:552–564.  https://doi.org/10.1038/nrg3244CrossRefGoogle Scholar
  6. 6.
    Holme P, Saramäki J (2011) Temporal networks.  https://doi.org/10.1016/j.physrep.2012.03.001
  7. 7.
    Nagler J, Levina A, Timme M (2011) Impact of single links in competitive percolation. Nat Phys 7:265–270.  https://doi.org/10.1038/nphys1860CrossRefGoogle Scholar
  8. 8.
    Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554–2558CrossRefGoogle Scholar
  9. 9.
    Albert R (2007) Network inference, analysis, and modeling in systems biology. Plant Cell 19:3327–3338.  https://doi.org/10.1105/tpc.107.054700CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Majdandzic A, Podobnik B, Buldyrev SV, Kenett DY, Havlin S, Eugene Stanley H (2013) Spontaneous recovery in dynamical networks. Nat Phys 10:34–38.  https://doi.org/10.1038/nphys2819CrossRefGoogle Scholar
  11. 11.
    Sekara V, Stopczynski A, Lehmann S (2016) Fundamental structures of dynamic social networks. Proc Natl Acad Sci U S A 113:9977–9982.  https://doi.org/10.1073/pnas.1602803113CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Alessandretti L, Sapiezynski P, Lehmann S, Baronchelli A (2017) Multi-scale spatio-temporal analysis of human mobility. PLoS One 12:e0171686.  https://doi.org/10.1371/journal.pone.0171686CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Miele V, Matias C (2017) Revealing the hidden structure of dynamic ecological networks. R Soc Open Sci 4:170251.  https://doi.org/10.1098/rsos.170251CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang Y, Yang N, Lall U (2016) Modeling and simulation of the vulnerability of interdependent power-water infrastructure networks to cascading failures. J Syst Sci Syst Eng 25:102–118.  https://doi.org/10.1007/s11518-016-5295-3CrossRefGoogle Scholar
  15. 15.
    Bansal S, Read J, Pourbohloul B, Meyers LA (2010) The dynamic nature of contact networks in infectious disease epidemiology. J Biol Dyn 4:478–489.  https://doi.org/10.1080/17513758.2010.503376CrossRefPubMedGoogle Scholar
  16. 16.
    Heath LS, Sioson AA (2009) Multimodal networks: structure and operations. IEEE/ACM Trans Comput Biol Bioinform 6:321–332.  https://doi.org/10.1109/TCBB.2007.70243CrossRefPubMedGoogle Scholar
  17. 17.
    Kivela M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2:203–271.  https://doi.org/10.1093/comnet/cnu016CrossRefGoogle Scholar
  18. 18.
    Carley KM (2014) ORA: a toolkit for dynamic network analysis and visualization. Encycl Soc Netw Anal Min. Springer, New York, NY, pp 1219–1228.  https://doi.org/10.1007/978-1-4614-6170-8_309CrossRefGoogle Scholar
  19. 19.
    Rusk N (2008) A meta-network of -omics. Nat Methods 5:25–25.  https://doi.org/10.1038/nmeth1165CrossRefGoogle Scholar
  20. 20.
    Blonder B, Wey TW, Dornhaus A, James R, Sih A (2012) Temporal dynamics and network analysis. Methods Ecol Evol 3:958–972.  https://doi.org/10.1111/j.2041-210X.2012.00236.xCrossRefGoogle Scholar
  21. 21.
    Faisal FE, Milenković T (2014) Dynamic networks reveal key players in aging. Bioinformatics 30:1721–1729.  https://doi.org/10.1093/bioinformatics/btu089CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang X, Moore C, Newman MEJ (2016) Random graph models for dynamic networks. Eur Phys J B 90:200CrossRefGoogle Scholar
  23. 23.
    Orsini C, Dankulov MM, Colomer-de-Simón P, Jamakovic A, Mahadevan P, Vahdat A, Bassler KE, Toroczkai Z, Boguñá M, Caldarelli G, Fortunato S, Krioukov D (2015) Quantifying randomness in real networks. Nat Commun 6:8627.  https://doi.org/10.1038/ncomms9627CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Armbruster B, Carlsson JG (2011) Dynamic network models. https://arxiv.org/abs/1103.2843
  25. 25.
    Sarkar P, Moore AW (2005) Dynamic social network analysis using latent space models. ACM SIGKDD Explor Newsl 7:31–40.  https://doi.org/10.1145/1117454.1117459CrossRefGoogle Scholar
  26. 26.
    Legendi RO, Gulyás L (2014) Agent-based dynamic network models: validation on empirical data. Springer, Berlin, pp 49–60.  https://doi.org/10.1007/978-3-642-39829-2_5CrossRefGoogle Scholar
  27. 27.
    Hoff PD, Raftery AE, Handcock MS (2002) Latent space approaches to social network analysis. J Am Stat Assoc 97:1090–1098.  https://doi.org/10.1198/016214502388618906CrossRefGoogle Scholar
  28. 28.
    Keidar I, Keidar I, Kuhn F, Oshman R (2011) 81 Dynamic networks: models and algorithms. ACM SIGACT News 42(1):82–96CrossRefGoogle Scholar
  29. 29.
    Dikicioglu D, Karabekmez E, Rash B, Pir P, Kirdar B, Oliver SG (2011) How yeast re-programmes its transcriptional profile in response to different nutrient impulses. BMC Syst Biol 5:148.  https://doi.org/10.1186/1752-0509-5-148CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dikicioglu D, Oc S, Rash BM, Dunn WB, Pir P, Kell DB, Kirdar B, Oliver SG (2014) Yeast cells with impaired drug resistance accumulate glycerol and glucose. Mol BioSyst 10:93–102.  https://doi.org/10.1039/C2MB25512jCrossRefPubMedGoogle Scholar
  31. 31.
    Dikicioglu D, Dunn WB, Kell DB, Kirdar B, Oliver SG (2012) Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment. Mol BioSyst 8:1760–1774.  https://doi.org/10.1039/c2mb05443dCrossRefPubMedGoogle Scholar
  32. 32.
    Poulin J-F, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R (2016) Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 19:1131–1141.  https://doi.org/10.1038/nn.4366CrossRefPubMedGoogle Scholar
  33. 33.
    Pavličev M, Wagner GP, Chavan AR, Owens K, Maziarz J, Dunn-Fletcher C, Kallapur SG, Muglia L, Jones H (2017) Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res 27:349–361.  https://doi.org/10.1101/gr.207597.116CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Breker M, Schuldiner M (2014) The emergence of proteome-wide technologies: systematic analysis of proteins comes of age. Nat Rev Mol Cell Biol 15:453–464.  https://doi.org/10.1038/nrm3821CrossRefPubMedGoogle Scholar
  35. 35.
    Kuwada NJ, Traxler B, Wiggins PA (2015) Genome-scale quantitative characterization of bacterial protein localization dynamics throughout the cell cycle. Mol Microbiol 95:64–79.  https://doi.org/10.1111/mmi.12841CrossRefPubMedGoogle Scholar
  36. 36.
    Leek JT, Monsen E, Dabney AR, Storey JD (2006) EDGE: extraction and analysis of differential gene expression. Bioinformatics 22:507–508.  https://doi.org/10.1093/bioinformatics/btk005CrossRefPubMedGoogle Scholar
  37. 37.
    Aghabozorgi S, Seyed Shirkhorshidi A, Ying Wah T (2015) Time-series clustering – a decade review. Inf Syst 53:16–38.  https://doi.org/10.1016/j.is.2015.04.007CrossRefGoogle Scholar
  38. 38.
    Keogh E, Lin J (2005) Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowl Inf Syst 8:154–177.  https://doi.org/10.1007/s10115-004-0172-7CrossRefGoogle Scholar
  39. 39.
    Fidaner IB, Cankorur-Cetinkaya A, Dikicioglu D, Kirdar B, Cemgil AT, Oliver SG (2016) CLUSTERnGO: a user-defined modelling platform for two-stage clustering of time-series data. Bioinformatics (Oxford) 32:388–397.  https://doi.org/10.1093/bioinformatics/btv532CrossRefGoogle Scholar
  40. 40.
    Liu H, Tarima S, Borders AS, Getchell TV, Getchell ML, Stromberg AJ (2005) Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments. BMC Bioinformatics 6:106.  https://doi.org/10.1186/1471-2105-6-106CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Möller-Levet CS, Cho K-H, Wolkenhauer O (2003) Microarray data clustering based on temporal variation: FCV with TSD preclustering. Appl Bioinforma 2:35–45Google Scholar
  42. 42.
    Ramoni MF, Sebastiani P, Kohane IS (2002) Cluster analysis of gene expression dynamics. Proc Natl Acad Sci U S A 99:9121–9126.  https://doi.org/10.1073/pnas.132656399CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Taylor CF, Field D, Sansone S-A, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz P-A, Bogue M, Booth T, Brazma A, Brinkman RR, Michael Clark A, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Le Novère N, Leebens-Mack J, Lewis SE, Lord P, Mallon A-M, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26:889–896.  https://doi.org/10.1038/nbt.1411CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371.  https://doi.org/10.1038/ng1201-365CrossRefPubMedGoogle Scholar
  45. 45.
    Taylor CF, Paton NW, Lilley KS, Binz P-A, Julian RK, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893.  https://doi.org/10.1038/nbt1329CrossRefPubMedGoogle Scholar
  46. 46.
    Le Novère N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, Nielsen P, Sauro H, Shapiro B, Snoep JL, Spence HD, Wanner BL (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23:1509–1515.  https://doi.org/10.1038/nbt1156CrossRefPubMedGoogle Scholar
  47. 47.
    Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman WC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberg JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wang J, AP and the rest of the SBML Forum (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531.  https://doi.org/10.1093/bioinformatics/btg015CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
  2. 2.Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK

Personalised recommendations