Self-Establishing Communities: A Yeast Model to Study the Physiological Impact of Metabolic Cooperation in Eukaryotic Cells

  • Kate CampbellEmail author
  • Clara Correia-Melo
  • Markus RalserEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2049)


All biosynthetically active cells are able to export and import metabolites, the small molecule intermediaries of metabolism. In dense cell populations, this hallmark of cells results in the intercellular exchange of a wide spectrum of metabolites. Such metabolite exchange enables metabolic specialization of individual cells, leading to far reaching biological implications, as a consequence of the intrinsic connection between metabolism and cell physiology. In this chapter, we discuss methods on how to study metabolite exchange interactions by using self-establishing metabolically cooperating communities (SeMeCos) in the budding yeast Saccharomyces cerevisiae. SeMeCos exploit the stochastic segregation of episomes to progressively increase the number of essential metabolic interdependencies in a community that grows out from an initially prototrophic cell. By coupling genotype to metabotype, SeMeCos allow for the tracking of cells while they specialize metabolically and hence the opportunity to study their progressive change in physiology.

Key words

Metabolic cooperation Yeast communities Metabolic specialization 



We thank Dr. Susann Zilkenat for critical comments and proofreading of the manuscript. Work in the Ralser lab was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001134), the UK Medical Research Council (FC001134), and the Wellcome Trust (FC001134), and received specific funding from the Wellcome Trust (RG 200829/Z/16/Z).


  1. 1.
    Campbell K, Herrera-Dominguez L, Correia-Melo C et al (2018) Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Curr Opin Syst Biol 8:97–108CrossRefGoogle Scholar
  2. 2.
    Paczia N, Nilgen A, Lehmann T et al (2012) Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Factories 11:122CrossRefGoogle Scholar
  3. 3.
    Ponomarova O, Gabrielli N, Sévin DC et al (2017) Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst 5:345–357.e6CrossRefGoogle Scholar
  4. 4.
    Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738CrossRefGoogle Scholar
  5. 5.
    Hom EFY, Murray AW (2014) Plant-fungal ecology. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345:94–98CrossRefGoogle Scholar
  6. 6.
    Jiang X, Zerfaß C, Feng S et al (2018) Impact of spatial organization on a novel auxotrophic interaction among soil microbes. ISME J 12:1443–1456CrossRefGoogle Scholar
  7. 7.
    Sonveaux P, Végran F, Schroeder T et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942PubMedPubMedCentralGoogle Scholar
  8. 8.
    Freilich S, Zarecki R, Eilam O et al (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2:589CrossRefGoogle Scholar
  9. 9.
    Hosoda K, Suzuki S, Yamauchi Y et al (2011) Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS One 6:e17105CrossRefGoogle Scholar
  10. 10.
    Mee MT, Wang HH (2012) Engineering ecosystems and synthetic ecologies. Mol BioSyst 8:2470–2483CrossRefGoogle Scholar
  11. 11.
    Mee MT, Collins JJ, Church GM et al (2014) Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci U S A 111:E2149–E2156CrossRefGoogle Scholar
  12. 12.
    Wintermute EH, Silver PA (2010) Dynamics in the mixed microbial concourse. Genes Dev 24:2603–2614CrossRefGoogle Scholar
  13. 13.
    Kaleta C, Schäuble S, Rinas U et al (2013) Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J 8:1105–1114CrossRefGoogle Scholar
  14. 14.
    Orth JD, Conrad TM, Na J et al (2014) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol 7:535–535CrossRefGoogle Scholar
  15. 15.
    Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129CrossRefGoogle Scholar
  16. 16.
    Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:407CrossRefGoogle Scholar
  17. 17.
    Campbell K, Vowinckel J, Muelleder M et al (2015) Self-establishing communities enable cooperative metabolite exchange in a eukaryote. elife 4:e09943CrossRefGoogle Scholar
  18. 18.
    Momeni B, Waite AJ, Shou W (2013) Spatial self-organization favors heterotypic cooperation over cheating. elife 2:e00960CrossRefGoogle Scholar
  19. 19.
    Müller MJI, Neugeboren BI, Nelson DR et al (2014) Genetic drift opposes mutualism during spatial population expansion. Proc Natl Acad Sci U S A 111:1037–1042CrossRefGoogle Scholar
  20. 20.
    Shou W, Ram S, Vilar JMG (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104:1877–1882CrossRefGoogle Scholar
  21. 21.
    Alam MT, Olin-Sandoval V, Stincone A et al (2017) The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat Commun 8:16018CrossRefGoogle Scholar
  22. 22.
    Berg JM, Tymoczko JL, Stryer L (2002) Amino acid biosynthesis is regulated by feedback inhibition. In: Berg JM, Tymoczko JL, Stryer L (eds) Biochemistry, 5th edn. WH Freeman, New York, NYGoogle Scholar
  23. 23.
    Campbell K, Vowinckel J, Ralser M (2016) Cell-to-cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community. Biotechnol J 11:1169–1178CrossRefGoogle Scholar
  24. 24.
    Sinclair JH, Stevens BJ, Sanghavi P et al (1967) Mitochondrial-satellite and circular DNA filaments in yeast. Science 156:1234–1237CrossRefGoogle Scholar
  25. 25.
    Christianson TW, Sikorski RS, Dante M et al (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Moo-Young M, Chisti Y (1996) Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 14:401–435CrossRefGoogle Scholar
  27. 27.
    Gietz RD, Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:35–37CrossRefGoogle Scholar
  28. 28.
    Meinander NQ, Hahn-Hägerdal B (1997) Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. Biotechnol Bioeng 54:391–399CrossRefGoogle Scholar
  29. 29.
    Pronk JT (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68:2095–2100CrossRefGoogle Scholar
  30. 30.
    Sardonini CA, Dibiasio D (1987) A model for growth of Saccharomyces cerevisiae containing a recombinant plasmid in selective media. Biotechnol Bioeng 29:469–475CrossRefGoogle Scholar
  31. 31.
    Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122CrossRefGoogle Scholar
  32. 32.
    Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27PubMedPubMedCentralGoogle Scholar
  33. 33.
    Brachmann CB, Davies A, Cost GJ et al (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132CrossRefGoogle Scholar
  34. 34.
    Mülleder M, Campbell K, Matsarskaia O et al (2016) Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities. F1000Research 5:2351CrossRefGoogle Scholar
  35. 35.
    Bilsland E, Sparkes A, Williams K et al (2013) Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biol 3:120158CrossRefGoogle Scholar
  36. 36.
    Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670CrossRefGoogle Scholar
  37. 37.
    Gietz RD, Woods RA (2006) Yeast transformation by the LiAc/SS carrier DNA/PEG method. In: Xiao W (ed) Yeast protocol, Methods in molecular biology, vol 313. Humana, Totowa, NJ, pp 107–120CrossRefGoogle Scholar
  38. 38.
    Hoek TA, Axelrod K, Biancalani T et al (2016) Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol 14:e1002540CrossRefGoogle Scholar
  39. 39.
    Alam MT, Zelezniak A, Mülleder M et al (2016) The metabolic background is a global player in Saccharomyces gene expression epistasis. Nat Microbiol 1:15030CrossRefGoogle Scholar
  40. 40.
    Harcombe W (2010) Novel cooperation experimentally evolved between species. Evolution 64:2166–2172PubMedGoogle Scholar
  41. 41.
    Jia X, Liu C, Song H et al (2016) Design, analysis and application of synthetic microbial consortia. Synth Syst Biotechnol 1:109–117CrossRefGoogle Scholar
  42. 42.
    Pande S, Shitut S, Freund L et al (2015) Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun 6:6238CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
  2. 2.The Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
  3. 3.Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
  4. 4.Institute of BiochemistryCharité University MedicineBerlinGermany

Personalised recommendations