Advertisement

Probing the RNA-Binding Proteome from Yeast to Man: Major Advances and Challenges

  • Benedikt M. BeckmannEmail author
  • Sander Granneman
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2049)

Abstract

RNA-binding proteins are important for core cellular processes such as mRNA transcription, splicing, transport, translation, and degradation. Recently, hundreds of novel RNA-binders have been identified in vivo in various organisms and cell types. We discuss the RNA interactome capture technique which enabled this boost in identifying new RNA-binding proteins in eukaryotes. A focus of this chapter, however, is the presentation of different challenges and problems that need to be addressed to be able to understand the conserved mRNA-bound proteomes from yeast to man.

Key words

RNA-binding proteins mRNA processing Proteome Eukaryotes 

Notes

Acknowledgments

B.M.B. wishes to thank Matthias Hentze for discussions and comments on the chapter.

References

  1. 1.
    Gerstberger S, Hafner M, Tuschl T (2014) A consensus of human RNA-binding proteins. Nat Rev Genet 15:829–845CrossRefGoogle Scholar
  2. 2.
    Mitchell SF, Parker R (2014) Principles and properties of eukaryotic mRNPs. Mol Cell 54:547–558CrossRefGoogle Scholar
  3. 3.
    Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6:e255CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gehring NH, Wahle E, Fischer U (2017) Deciphering the mRNP code: RNA-bound determinants of post-transcriptional gene regulation. Trends Biochem Sci 42:369–382CrossRefGoogle Scholar
  5. 5.
    Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Darnell RB (2010) RNA regulation in neurologic disease and cancer. Cancer Res Treat 42:125–129CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Neelamraju Y, Hashemikhabir S, Janga SC (2015) The human RBPome: from genes and proteins to human disease. J Proteomics 127(Pt A):61–70CrossRefGoogle Scholar
  8. 8.
    Morris AR, Mukherjee N, Keene JD (2010) Systematic analysis of posttranscriptional gene expression. Wiley Interdiscip Rev Syst Biol Med 2:162–180CrossRefGoogle Scholar
  9. 9.
    Ascano M, Hafner M, Cekan P, Gerstberger S, Tuschl T (2012) Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip Rev RNA 3:159–177CrossRefGoogle Scholar
  10. 10.
    Huppertz I, Attig J, D'Ambrogio A et al (2014) iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65:274–287CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215CrossRefGoogle Scholar
  12. 12.
    Granneman S, Kudla G, Petfalski E, Tollervey D (2009) Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci U S A 106:9613–9618CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Van Nostrand EL, Pratt GA, Shishkin AA (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13:508–514CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29:607–614CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Anantharaman V, Koonin EV, Aravind L (2002) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–1464CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Scherrer T, Mittal N, Janga SC, Gerber AP (2010) A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS One 5:e15499CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tsvetanova NG, Klass DM, Salzman J, Brown PO (2010) Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 5:e12671CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406CrossRefGoogle Scholar
  19. 19.
    Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690CrossRefGoogle Scholar
  20. 20.
    Mitchell SF, Jain S, She M, Parker R (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20:127–133CrossRefGoogle Scholar
  21. 21.
    Beckmann BM, Horos R, Fischer B et al (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun 6:10127CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Matia-González AM, Laing EE, Gerber AP (2015) Conserved mRNA-binding proteomes in eukaryotic organisms. Nat Struct Mol Biol 22:1027–1033CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Castello A, Horos R, Strein C et al (2013) System-wide identification of RNA-binding proteins by interactome capture. Nat Protoc 83:491–500CrossRefGoogle Scholar
  24. 24.
    Beckmann BM (2017) RNA interactome capture in yeast. Methods 118–119:82–92CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kastelic N, Landthaler M (2017) mRNA interactome capture in mammalian cells. Methods 126:38–43CrossRefGoogle Scholar
  26. 26.
    Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Beckmann BM, Castello A, Medenbach J (2016) The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Arch 468:1029–1040CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hockensmith JW, Kubasek WL, Vorachek WR, von Hippel PH (1986) Laser cross-linking of nucleic acids to proteins. Methodology and first applications to the phage T4 DNA replication system. J Biol Chem 261:3512–3518PubMedGoogle Scholar
  29. 29.
    Favre A, Moreno G, Blondel MO, Kliber J, Vinzens F, Salet C (1986) 4-Thiouridine photosensitized RNA-protein cross-linking in mammalian cells. Biochem Biophys Res Commun 141:847–854CrossRefGoogle Scholar
  30. 30.
    Brimacombe R, Stiege W, Kyriatsoulis A, Maly P (1988) Intra-RNA and RNA-protein cross-linking techniques in Escherichia coli ribosomes. Methods Enzymol 164:287–309CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Favre A (1990) 4-Thiouridine as an intrinsic photoaffinity probe of nucleic acid structure and interactions. In: Morrison H (ed) Bioorganic photochemistry. Wiley, New York, pp 379–425Google Scholar
  32. 32.
    Liao Y, Castello A, Fischer B (2016) The cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep 16:1456–1469CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kwon SC, Yi H, Eichelbaum K (2013) The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol 20:1122–1130CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    He C, Sidoli S, Warneford-Thomson R et al (2016) High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol Cell 64:416–430CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liepelt A, Naarmann-de Vries IS, Simons N et al (2016) Identification of RNA-binding proteins in macrophages by interactome capture. Mol Cell Proteomics 15:2699–2714CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Conrad T, Albrecht AS, de Melo Costa VR et al (2016) Serial interactome capture of the human cell nucleus. Nat Commun 7:11212CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Despic V, Dejung M, Gu M et al (2017) Dynamic RNA-protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Res 27:1184–1194CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wessels HH, Imami K, Baltz AG (2016) The mRNA-bound proteome of the early fly embryo. Genome Res 26:1000–1009CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sysoev VO, Fischer B, Frese CK (2016) Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nat Commun 7:12128CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L, Le Roch KG (2016) The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum. Genome Biol 17:147CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Marondedze C, Thomas L, Serrano NL, Lilley KS, Gehring C (2016) The RNA-binding protein repertoire of Arabidopsis thaliana. Sci Rep 6:29766CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Reichel M, Liao Y, Rettel M (2016) In planta determination of the mRNA-binding proteome of Arabidopsis etiolated seedlings. Plant Cell 28:2435–2452CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chang CH, Curtis JD, Maggi LB Jr et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hentze MW, Preiss T (2010) The REM phase of gene regulation. Trends Biochem Sci 35:423–426CrossRefGoogle Scholar
  45. 45.
    Kramer K, Sachsenberg T, Beckmann BM (2014) Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat Methods 11:1064–1070CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Castello A, Fischer B, Frese CK et al (2016) Comprehensive identification of RNA-binding domains in human cells. Mol Cell 634:696–710CrossRefGoogle Scholar
  47. 47.
    Mullari M, Lyon D, Jensen LJ, Nielsen ML (2017) Specifying RNA-binding regions in proteins by peptide cross-linking and affinity purification. J Proteome Res 16:2762–2772CrossRefGoogle Scholar
  48. 48.
    Herrero J, Muffato M, Beal K (2016) Ensembl comparative genomics resources. Database (Oxford) 2016:baw053CrossRefGoogle Scholar
  49. 49.
    Ostlund G, Schmitt T, Forslund K (2010) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38(Database issue):D196–D203CrossRefGoogle Scholar
  50. 50.
    Macaulay IC, Svensson V, Labalette C (2016) Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep 14:966–977CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yoon JH, Gorospe M (2016) Identification of mRNA-interacting factors by MS2-TRAP (MS2-tagged RNA affinity purification). Methods Mol Biol 1421:15–22CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hogg JR, Collins K (2007) RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 13:868–880CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hartmuth K, Vornlocher HP, Lührmann R (2004) Tobramycin affinity tag purification of spliceosomes. Methods Mol Biol 257:47–64PubMedGoogle Scholar
  54. 54.
    Blencowe BJ, Sproat BS, Ryder U, Barabino S, Lamond AI (1989) Antisense probing of the human U4/U6 snRNP with biotinylated 2′-OMe RNA oligonucleotides. Cell 59:531–539CrossRefGoogle Scholar
  55. 55.
    Lingner J, Cech TR (1996) Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc Natl Acad Sci U S A 93:10712–10717CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rogell B, Fischer B, Rettel M (2017) Specific RNP capture with antisense LNA/DNA mixmers. RNA 23:1290–1302CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Matia-González AM, Iadevaia V, Gerber AP (2017) A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 118–119:93–100CrossRefGoogle Scholar
  58. 58.
    Milo R, Phillips R (2015) Cell biology by the numbers, 1st edn. Garland Science, New YorkGoogle Scholar
  59. 59.
    Raj A, van den Bogaard P, Rifkin S, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chu C, Zhang QC, da Rocha ST et al (2015) Systematic discovery of Xist RNA binding proteins. Cell 1612:404–416CrossRefGoogle Scholar
  61. 61.
    Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211CrossRefGoogle Scholar
  62. 62.
    Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213CrossRefGoogle Scholar
  63. 63.
    Saiki RK, Gelfand DH, Stoffel S (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491CrossRefGoogle Scholar
  64. 64.
    Van Dijk EL, Jaszczyszyn Y, Thermes C (2014) Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res 322:12–20CrossRefGoogle Scholar
  65. 65.
    Marzluff WF (2005) Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr Opin Cell Biol 17:274–280CrossRefGoogle Scholar
  66. 66.
    Yamashita A, Shichino Y, Yamamoto M (2015) The long non-coding RNA world in yeasts. Biochim Biophys Acta 1859(1):147–154CrossRefGoogle Scholar
  67. 67.
    Tudek A, Candelli T, Libri D (2015) Non-coding transcription by RNA polymerase II in yeast: Hasard or nécessité? Biochimie 117:28–36CrossRefGoogle Scholar
  68. 68.
    Beggs S, James TC, Bond U (2012) The PolyA tail length of yeast histone mRNAs varies during the cell cycle and is influenced by Sen1p and Rrp6p. Nucleic Acids Res 40:2700–2711CrossRefGoogle Scholar
  69. 69.
    Schmid M, Olszewski P, Pelechano V, Gupta I, Steinmetz LM, Jensen TH (2015) The nuclear polyA-binding protein Nab2p is essential for mRNA production. Cell Rep 12:128–139CrossRefGoogle Scholar
  70. 70.
    Kadowaki T, Schneiter R, Hitomi M, Tartakoff AM (1995) Mutations in nucleolar proteins lead to nucleolar accumulation of polyA+ RNA in Saccharomyces cerevisiae. Mol Biol Cell 6:1103–1110CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kuai L, Fang F, Butler JS, Sherman F (2004) Polyadenylation of rRNA in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101:8581–8586CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Battaglia S, Lidschreiber M, Baejen C, Torkler P, Vos SM, Cramer P (2017) RNA-dependent chromatin association of transcription elongation factors and Pol II CTD kinases. elife 24:e25637CrossRefGoogle Scholar
  73. 73.
    Sayou C, Millán-Zambrano G, Santos-Rosa H (2017) RNA binding by histone methyltransferases Set1 and Set2. Mol Cell Biol 37:e00165–e00117CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Herzel L, Ottoz DSM, Alpert T, Neugebauer KM (2017) Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol 18:637–650CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Barrass JD, Reid JE, Huang Y (2015) Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling. Genome Biol 16:282CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Van Nues R, Schweikert G, de Leau E (2017) Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress. Nat Commun 8:12CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hennig J, Sattler M (2015) Deciphering the protein-RNA recognition code: combining large-scale quantitative methods with structural biology. BioEssays 37:899–908CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Le Hir H, Saulière J, Wang Z (2016) The exon junction complex as a node of post-transcriptional networks. Nat Rev Mol Cell Biol 17:41–54CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gong C, Maquat LE (2015) Affinity purification of long noncoding RNA-protein complexes from formaldehyde cross-linked mammalian cells. Methods Mol Biol 1206:81–86CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Yeh HS, Chang JW, Yong J (2016) Ribo-proteomics approach to profile RNA-protein and protein-protein interaction networks. Methods Mol Biol 1421:165–174CrossRefGoogle Scholar
  81. 81.
    Heym RG, Niessing D (2012) Principles of mRNA transport in yeast. Cell Mol Life Sci 69:1843–1853CrossRefGoogle Scholar
  82. 82.
    Niedner A, Edelmann FT, Niessing D (2014) Of social molecules: the interactive assembly of ASH1 mRNA-transport complexes in yeast. RNA Biol 11:998–1009CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Singer-Krüger B, Jansen RP (2014) Here, there, everywhere. mRNA localization in budding yeast. RNA Biol 11:1031–1039CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hyman AA, Weber CA, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58CrossRefGoogle Scholar
  85. 85.
    Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 118:1019–1030CrossRefGoogle Scholar
  86. 86.
    Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60:208–219CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Calabretta S, Richard S (2015) Emerging roles of disordered sequences in RNA-binding proteins. Trends Biochem Sci 40:662–672CrossRefGoogle Scholar
  88. 88.
    Hubstenberger A, Courel M, Bénard M (2017) P-body purification reveals the condensation of repressed mRNA regulons. Mol Cell 68:144–157CrossRefGoogle Scholar
  89. 89.
    Riback JA, Katanski CD, Kear-Scott JL (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–1040.e19CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Lee JH, Daugharthy ER, Scheiman J (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–1363CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Byrne A, Beaudin AE, Olsen HE (2017) Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 8:16027CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Huang G, Willems K, Soskine M, Wloka C, Maglia G (2017) Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat Commun 8:935CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930CrossRefGoogle Scholar
  94. 94.
    Fica SM, Tuttle N, Novak T et al (2013) RNA catalyses nuclear pre-mRNA splicing. Nature 503:229–234CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(Pt 2):849–857CrossRefGoogle Scholar
  96. 96.
    Crick F (1970) Central dogma of molecular biology. Nature 227:561–563CrossRefGoogle Scholar
  97. 97.
    Wang P, Xu J, Wang Y, Cao X (2017) An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science 2017:eaao0409Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Infection Biology, IRI Life SciencesHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Centre for Systems and Synthetic Biology (SynthSys)University of EdinburghEdinburghUK

Personalised recommendations