Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT

  • Daniel J. H. Nightingale
  • Stephen G. Oliver
  • Kathryn S. LilleyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2049)


The subcellular localization of proteins is a posttranslational modification of paramount importance. The ability to study subcellular and organelle proteomes improves our understanding of cellular homeostasis and cellular dynamics. In this chapter, we describe a protocol for the unbiased and high-throughput study of protein subcellular localization in the yeast Saccharomyces cerevisiae: hyperplexed localization of organelle proteins by isotope tagging (hyperLOPIT), which involves biochemical fractionation of Saccharomyces cerevisiae and high resolution mass spectrometry-based protein quantitation using TMT 10-plex isobaric tags. This protocol enables the determination of the subcellular localizations of thousands of proteins in parallel in a single experiment and thereby deep sampling and high-resolution mapping of the spatial proteome.

Key words

Saccharomyces cerevisiae hyperLOPIT Organelle Protein localization Subcellular fractionation Spatial proteomics 



We gratefully acknowledge funding from the BBSRC (CASE studentship BB/I016147/1 to K.S.L. and S.G.O.). We thank Mohamed Elzek for critical reading of the manuscript and suggestions on layout and content.


  1. 1.
    Delic M, Valli M, Graf AB et al (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37:872–914CrossRefGoogle Scholar
  2. 2.
    Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793:650–663CrossRefGoogle Scholar
  3. 3.
    Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350CrossRefGoogle Scholar
  4. 4.
    Gancedo C, Flores C-L, Gancedo JM (2016) The expanding landscape of moonlighting proteins in yeasts. Microbiol Mol Biol Rev 80:765–777CrossRefGoogle Scholar
  5. 5.
    Chen XJ, Wang X, Kaufman BA et al (2005) Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 80(307):714–717CrossRefGoogle Scholar
  6. 6.
    Hope IA, Struhl K (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894CrossRefGoogle Scholar
  7. 7.
    Nikolaev Y, Deillon C, Hoffmann SRK et al (2010) The leucine zipper domains of the transcription factors GCN4 and c-Jun have ribonuclease activity. PLoS One 5:e10765CrossRefGoogle Scholar
  8. 8.
    Palmer E, Freeman T (2004) Investigation into the use of C- and N-terminal GFP fusion proteins for subcellular localization studies using reverse transfection microarrays. Comp Funct Genomics 5:342–353CrossRefGoogle Scholar
  9. 9.
    Stadler C, Rexhepaj E, Singan VR et al (2013) Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods 10:315–323CrossRefGoogle Scholar
  10. 10.
    Breker M, Gymrek M, Schuldiner M (2013) A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 200:839–850CrossRefGoogle Scholar
  11. 11.
    Huh W-K, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691CrossRefGoogle Scholar
  12. 12.
    Li X-W, Rees JS, Xue P et al (2014) New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J Biol Chem 289:14434–14447CrossRefGoogle Scholar
  13. 13.
    Hung V, Zou P, Rhee H-W et al (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55:332–341CrossRefGoogle Scholar
  14. 14.
    Roux KJ, Kim DI, Raida M et al (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810CrossRefGoogle Scholar
  15. 15.
    Rhee H-W, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331CrossRefGoogle Scholar
  16. 16.
    Rees JS, Li X-W, Perrett S et al (2017) Selective proteomic proximity labeling assay using tyramide (SPPLAT): a quantitative method for the proteomic analysis of localized membrane-bound protein clusters. In: Current protocols in protein science. Wiley, Hoboken, NJ, pp 19.27.1–19.27.18CrossRefGoogle Scholar
  17. 17.
    Christoforou A, Mulvey CM, Breckels LM et al (2016) A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun 7:9992CrossRefGoogle Scholar
  18. 18.
    de Duve C (1971) Tissue fraction-past and present. J Cell Biol 50:20CrossRefGoogle Scholar
  19. 19.
    Foster LJ, de Hoog CL, Zhang Y et al (2006) A mammalian organelle map by protein correlation profiling. Cell 125:187–199CrossRefGoogle Scholar
  20. 20.
    Itzhak DN, Tyanova S, Cox J et al (2016) Global, quantitative and dynamic mapping of protein subcellular localization. elife 5:e16950CrossRefGoogle Scholar
  21. 21.
    Jean Beltran PM, Mathias RA, Cristea IM et al (2016) A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Syst 3:361–373.e6CrossRefGoogle Scholar
  22. 22.
    Itzhak DN, Davies C, Tyanova S et al (2017) A mass spectrometry-based approach for mapping protein subcellular localization reveals the spatial proteome of mouse primary neurons. Cell Rep 20:2706–2718CrossRefGoogle Scholar
  23. 23.
    Christoforou A, Arias AM, Lilley KS (2014) Determining protein subcellular localization in mammalian cell culture with biochemical fractionation and iTRAQ 8-plex quantification. Methods Mol Biol 1156:157–174CrossRefGoogle Scholar
  24. 24.
    Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169CrossRefGoogle Scholar
  25. 25.
    Rieder SE, Emr SD (2001) Isolation of subcellular fractions from the yeast Saccharomyces cerevisiae. Curr Protoc Cell Biol 8:1–68Google Scholar
  26. 26.
    Sadowski PG, Dunkley TPJ, Shadforth IP et al (2006) Quantitative proteomic approach to study subcellular localization of membrane proteins. Nat Protoc 1:1778–1789CrossRefGoogle Scholar
  27. 27.
    Dunkley TPJ, Hester S, Shadforth IP et al (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103:6518–6523CrossRefGoogle Scholar
  28. 28.
    Thompson A, Schäfer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904CrossRefGoogle Scholar
  29. 29.
    McAlister GC, Nusinow DP, Jedrychowski MP et al (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158CrossRefGoogle Scholar
  30. 30.
    Mulvey CM, Breckels LM, Geladaki A et al (2017) Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nat Protoc 12:1110–1135CrossRefGoogle Scholar
  31. 31.
    Thul PJ, Åkesson L, Wiking M et al (2017) A subcellular map of the human proteome. Science 356:eaal3321CrossRefGoogle Scholar
  32. 32.
    Shliaha PV (2014) Investigation of protein abundance and localization by mass spectrometry and ion-mobility spectrometry-mass spectrometry methods. Dissertation, University of CambridgeGoogle Scholar
  33. 33.
    Breckels LM, Mulvey CM, Lilley KS et al (2016) A Bioconductor workflow for processing and analysing spatial proteomics data. F1000Res 5:2926CrossRefGoogle Scholar
  34. 34.
    R Core Team (2017) R: a language and environment for statistical computing.
  35. 35.
    Gatto L, Lilley KS (2012) Msnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28:288–289CrossRefGoogle Scholar
  36. 36.
    Gatto L, Breckels LM, Wieczorek S et al (2014) Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics 30:1322–1324CrossRefGoogle Scholar
  37. 37.
    Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80CrossRefGoogle Scholar
  38. 38.
    Kizer KO, Xiao T, Strahl BD (2006) Accelerated nuclei preparation and methods for analysis of histone modifications in yeast. Methods 40:296–302CrossRefGoogle Scholar
  39. 39.
    Wang Y, Lilley KS, Oliver SG (2014) A protocol for the subcellular fractionation of Saccharomyces cerevisiae using nitrogen cavitation and density gradient centrifugation. Yeast 31:127–135CrossRefGoogle Scholar
  40. 40.
    Villén J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3:1630–1638CrossRefGoogle Scholar
  41. 41.
    Breckels LM, Gatto L, Christoforou A et al (2013) The effect of organelle discovery upon sub-cellular protein localisation. J Proteome 88:129–140CrossRefGoogle Scholar
  42. 42.
    Breckels LM, Holden SB, Wojnar D et al (2016) Learning from heterogeneous data sources: an application in spatial proteomics. PLoS Comput Biol 12:e1004920CrossRefGoogle Scholar
  43. 43.
    Baker Brachmann C, Davies A, Cost GJ et al (1998) Designer deletion strains derived fromSaccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132CrossRefGoogle Scholar
  44. 44.
    Graham JM (2015) Fractionation of subcellular organelles. In: Current protocols in cell biology. Wiley, Hoboken, NJ, pp 3.1.1–3.1.22CrossRefGoogle Scholar
  45. 45.
    Zhang R, Sioma CS, Wang S et al (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem 73:5142–5149CrossRefGoogle Scholar
  46. 46.
    Wenger CD, Lee MV, Hebert AS et al (2011) Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8:933–935CrossRefGoogle Scholar
  47. 47.
    Ting L, Rad R, Gygi SP et al (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8:937–940CrossRefGoogle Scholar
  48. 48.
    McAlister GC, Huttlin EL, Haas W et al (2012) Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem 84:7469–7478CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Daniel J. H. Nightingale
    • 1
    • 2
  • Stephen G. Oliver
    • 2
  • Kathryn S. Lilley
    • 1
    • 2
    Email author
  1. 1.Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK
  2. 2.Cambridge Systems Biology Centre, Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations