Advertisement

Yeast Systems Biology: The Continuing Challenge of Eukaryotic Complexity

  • Stephen G. OliverEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2049)

Abstract

Research on yeast has produced a plethora of tools and resources that have been central to the progress of systems biology. This chapter reviews these resources, explains the innovations that have been made since the first edition of this book, and introduces the constituent chapters of the current edition. The value of these resources not only in building and testing models of the functional networks of the yeast cell, but also in providing a foundation for network studies on the molecular basis of complex human diseases is considered. The gaps in this vast compendium of data, including enzyme kinetic characteristics, biomass composition, transport processes, and cell–cell interactions are discussed, as are the interactions between yeast cells and those of other species. The relevance of these studies to both traditional and advanced biotechnologies and to human medicine is considered, and the opportunities and challenges in using unicellular yeasts to model the systems of multicellular organisms are presented.

Key words

Yeast Systems biology Network interactions Network models Yeast models of human diseases 

Notes

Acknowledgments

Work on yeast systems biology in my laboratory has been supported by the Biotechnology & Biological Sciences Research Council (UK), the European Commission, and the Wellcome Trust.

References

  1. 1.
    Castrillo JI, Oliver SG (2011) Yeast systems biology: the challenge of eukaryotic complexity. Methods Mol Biol 759:3–28PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Castrillo JI, Oliver SG (eds) (2019) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  3. 3.
    Waddington CH (1968) Towards a theoretical biology. Nature 218:525–527PubMedCrossRefGoogle Scholar
  4. 4.
    Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:546–567PubMedCrossRefGoogle Scholar
  5. 5.
    Oliver SG, van der Aart QJM, Agostoni-Carbone ML et al (1992) The complete DNA sequence of yeast chromosome III. Nature 357:38–46CrossRefGoogle Scholar
  6. 6.
    Oliver SG (1996) From DNA sequence to biological function. Nature 379:597–600PubMedCrossRefGoogle Scholar
  7. 7.
    Oliver S (2000) Guilt-by-association goes global. Nature 403:601–603PubMedCrossRefGoogle Scholar
  8. 8.
    Snyder M, Gallagher JEG (2009) Systems biology from a yeast omics perspective. FEBS Lett 583:3895–3899PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hieter P, Boguski M (1997) Functional genomics: it’s all how you read it. Science 278:601–602PubMedCrossRefGoogle Scholar
  10. 10.
    Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Peter J, De Chiara M, Friedrich A (2018) Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556:339–347Google Scholar
  12. 12.
    Jinks-Robertson S, Klein HL (2015) Ribonucleotides in DNA: hidden in plain sight. Nat Struct Mol Biol 22:176–178PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Koh KD, Balachander S, Hesselberth JR et al (2015) Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat Methods 12:251–257PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Balachander S, Yang T, Newnam G et al (2019) Capture of ribonucleotides in yeast genomic DNA using ribose-seq. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in Molecular Biology. Springer, Totowa, NJGoogle Scholar
  15. 15.
    Hesketh A (2019) RNA sequencing: best practices, experimental protocol and data analysis. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  16. 16.
    Kang Y, Ooi HS, Zhao X (2019) Transcript profiling analysis through paired-end ditag (PET) approach coupled with deep sequencing revealing transcriptome complexity in yeast. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  17. 17.
    Hesketh AR, Castrillo JI, Sawyer TJ et al (2013) Investigating the physiological response of Pichia (Komagataella) pastoris GS115 to the heterologous expression of misfolded proteins using chemostat cultures. Appl Microbiol Biotechnol 97:9747–9762PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ledesma L, Sandoval E, Cruz-Martinez U (2018) YAAM: yeast amino acid modifications database. Database (Oxford) 1099Google Scholar
  19. 19.
    YAAM: yeast amino acid modifications database. http://yaam.ifc.unam.mx/index.php Accessed 4th January 2019
  20. 20.
    Zacchi LF, Schulz BL (2019) Data-independent acquisition for yeast glycoproteomics. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  21. 21.
    Chaleckis R, Ohashi K, Meister I et al (2019) Metabolomic analysis of yeast and human cells: latest advances and challenges. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  22. 22.
    Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391PubMedCrossRefGoogle Scholar
  23. 23.
    Mülleder M, Capuano F, Pir P et al (2012) A prototrophic deletion mutant collection for yeast metabolomics and systems biology. Nat Biotechnol 30:1176–1178PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Allen J, Davey HM, Broadhurst D et al (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696PubMedCrossRefGoogle Scholar
  25. 25.
    Mülleder M, Calvani E, Alam MT et al (2016) Functional metabolomics describes the yeast biosynthetic regulome. Cell 167:553–565PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Schones DE, Cui K, Cuddapah S (2011) Genome-wide approaches to studying yeast chromatin modifications. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  27. 27.
    Byeon B, Wang W, Barski A et al (2013) The ATP-dependent chromatin remodeling enzyme Fun30 represses transcription by sliding promoter-proximal nucleosomes. J Biol Chem 288:23182–23193PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Borelov S, Reynolds N, Xenophontos M et al (2018) The nucleosome remodeling and deacetylation complex modulates chromatin structure at sites of active transcription to fine-tune gene expression. Mol Cell 71:56–72CrossRefGoogle Scholar
  29. 29.
    Poramba-Liyanage DW, Korthout T, van Leeuwen F (2019) Epi-ID: systematic and direct screening for chromatin regulators in yeast by Barcode-ChIP-Seq. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  30. 30.
    Tollervey D (2015) RNA surveillance and the exosome. RNA 21:492–493PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Thomas HB, O’Keefe RT (2019) Advanced methods for the analysis of altered pre-mRNA splicing in yeast and disease. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  32. 32.
    Swaminathan A, Harrison PF, Preiss T et al (2019) PAT-Seq: a method for simultaneous quantitation of gene expression, poly(A)-site selection and poly(A) length-distribution in yeast transcriptomes. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  33. 33.
    Alam MT, Olin-Sandoval V, Stincone A et al (2017) The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat Commun 8:16018PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Breker M, Gymrek M, Schuldiner M (2013) A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 200:839–850PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Nightingale DJH, Oliver SG, Lilley KS (2019) Mapping the Saccharomyces cerevisiae spatial proteome with high resolution using hyperLOPIT. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  36. 36.
    He F, Murabito E, Westerhoff HV (2016) Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering. J R Soc Interface 13:20151046PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chubukov V, Gerosa L, Kochnowski K et al (2014) Coordination of microbial metabolism. Nature Rev Microbiol 12:327–340CrossRefGoogle Scholar
  38. 38.
    Bouwman J, Kiewiet J, Alexander Lindenbergh A et al (2011) Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28:43–53PubMedCrossRefGoogle Scholar
  39. 39.
    Klipp E, Nordlander B, Kruger R et al (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ralser M, Wamelink MMC, Latkolik S et al (2009) Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response. Nat Biotechnol 27:604–605PubMedCrossRefGoogle Scholar
  41. 41.
    Klipp E, Liebermeister W, Wierling C et al (2016) Systems biology: a textbook, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  42. 42.
    Dikicioglu D (2019) Rational design and methods of analysis for the study of short- and long-term dynamic responses of eukaryotic systems. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  43. 43.
    Chen Y, Li G, Nielsen J (2019) Genome-scale metabolic modeling from yeast to human cell models of complex diseases: latest advances and challenges. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  44. 44.
    Tunahan Çakır T, Kökrek E, Avşar G, Abdik E, Pir P (2019) Next-generation genome-scale models incorporating multilevel ‘omics data: from yeast to human. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  45. 45.
    van der Zee L, Barberis M (2019) Advanced modeling of cellular proliferation: towards a multi-scale framework coupling cell cycle to metabolism by integrating logical and constraint-based models. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  46. 46.
    Júlvez J, Dikicioglu D, Oliver SG (2018) Handling variability and incompleteness of biological data by flexible nets: a case study for Wilson disease. NPJ Syst Biol Appl 4:7PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Smallbone K, Messiha HL, Carroll KM et al (2013) A model of yeast glycolysis based on a consistent kinetic characterization of all its enzymes. FEBS Lett 587:2832–2841PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dikicioglu D, Kırdar B, Oliver SG (2015) Biomass composition: the “elephant in the room” of metabolic modelling. Metabolomics 11:1690–1701PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Carnicer M, Baumann K, Töplitz I et al (2009) Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb Cell Factories 8:65CrossRefGoogle Scholar
  50. 50.
    Rußmayer H, Buchetics M, Gruber C et al (2015) Systems-level organization of yeast methylotrophic lifestyle. BMC Biol 13:80PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cankorur-Cetinkaya A, Dikicioglu D, Oliver SG (2017) Metabolic modeling to identify engineering targets for Komagataella phaffii: the effect of biomass composition on gene target identification. Biotechnol Bioeng 114:2605–2615PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Stanford NJ, Scharm M, Dobson PD et al (2019) Data management in computational systems biology: exploring standards, tools, databases, and packaging best practices. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  53. 53.
    Adams JU (2015) Genetics: big hopes for big data. Nature 527:S108–S109PubMedCrossRefGoogle Scholar
  54. 54.
    Oliver SG, Lock A, Harris MA et al (2016) Model organism databases: essential resources that need the support of both funders and users. BMC Biol 14:49PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rutherford KM, Harris MA, Lock A et al (2014) Canto: an online tool for community literature curation. Bioinformatics 30:1791–1792PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    King RD, Rowland J, Oliver SG et al (2009) The automation of science. Science 324:85–89PubMedCrossRefGoogle Scholar
  57. 57.
    Szappanos B, Kovács K, Szamecz B et al (2011) An integrated approach to elucidate the organization principles of genetic interaction networks in yeast metabolism. Nat Genet 43:656–662PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lupas AN (2014) What I cannot create, I do not understand. Science 346:1455–1456PubMedCrossRefGoogle Scholar
  59. 59.
    Szczebara FM, Chandelier C, Villeret C (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–148PubMedCrossRefGoogle Scholar
  60. 60.
    Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefGoogle Scholar
  61. 61.
    Galanie S, Thodey K, Trenchard IJ et al (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    DiCarlo JE, Norville JE, Mali P et al (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nuclec Acids Res 41:4336–4343CrossRefGoogle Scholar
  63. 63.
    Walter JM, Schubert MG, Kung SH et al (2019) Method for multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas9. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  64. 64.
    Richardson SM, Mitchell LA, Stracquadanio G et al (2017) Design of a synthetic yeast genome. Science 355:1040–1044CrossRefGoogle Scholar
  65. 65.
    Shen Y, Stracquadanio G, Wang Y et al (2016) SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res 26:36–49PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Blount BA, Gowers G-OF, Ho JCH (2018) Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9:1932PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Oliver SG (1996) A network approach to the systematic analysis of yeast gene function. Trends Genet 12:241–242PubMedCrossRefGoogle Scholar
  68. 68.
    Foury F (1997) Human genetic diseases: a cross-talk between man and yeast. Gene 195:1–10PubMedCrossRefGoogle Scholar
  69. 69.
    Campuzano V, Montermini L, Molto M et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang N, Osborn M, Gitsham P et al (2003) Using yeast to place human genes in functional categories. Gene 303:121–129PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hamza A, Tammpere E, Kofoed M et al (2015) Complementation of yeast genes with human genes as an experimental platform for functional testing of human genetic variants. Genetics 201:1263–1274PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Futai E (2019) Advanced yeast models of familial Alzheimer disease expressing FAD-linked presenilin to screen mutations and γ-secretase modulators. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  73. 73.
    Piotrowski JS, Daniel F, Tardiff DF (2019) From yeast-to-humans: leveraging new approaches in yeast to accelerate discovery of therapeutic targets for synucleinopathies. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  74. 74.
    Hartwell LH, Szankasi P, Roberts CJ et al (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–1068PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Matuo R, Sousa FG, Soares DG et al (2012) Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 70:491–502CrossRefGoogle Scholar
  76. 76.
    Cal M, Matyjaszczyk I, Ułaszewski S (2019) Yeast genome screening and methods for the discovery of metabolism pathways involved in a phenotypic response to anti-cancer agents. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  77. 77.
    Bilsland E, Sparkes A, Williams K et al (2013) Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biol 3:120158PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Bilsland E, Bean DM, Devaney E et al (2016) Yeast-based high-throughput screens to identify novel compounds active against Brugia malayi. PLoS Negl Trop Dis 10:e000401CrossRefGoogle Scholar
  79. 79.
    Yu H, Braun P, Yıldırım MA et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Costanzo M, Baryshnikova A, Bellay J et al (2010) The genetic landscape of a cell. Science 327:425–431PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Grys BT, Lo DS, Sahin N et al (2016) Machine learning and computer vision approaches for phenotypic profiling. J Cell Biol 216:65–71PubMedCrossRefGoogle Scholar
  82. 82.
    Kuzmin E, Van der Sluis B, Wang W et al (2018) Systematic analysis of complex genetic interactions. Science 360:eaao1729PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ciryam P, Lambert-Smith I, Bean D et al (2017) Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proc Natl Acad Sci U S A 114:E3935–E3943PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cools M, Rompf M, Mayer A, André B (2019) Measuring the activity of plasma membrane and vacuolar transporters in yeast. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  85. 85.
    Piccirillo S, Morales R, White MG et al (2015) Cell differentiation and spatial organization in yeast colonies: role of cell-wall integrity pathway. Genetics 201:1427–1438PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Campbell K, Correia-Melo C, Ralser M (2019) Self-establishing communities, a yeast model to study the physiological impact of metabolic cooperation in eukaryotic cells. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJGoogle Scholar
  87. 87.
    Palková Z, Janderová B, Gabriel J et al (1997) Ammonia mediates communication between yeast colonies. Nature 390:532–536PubMedCrossRefGoogle Scholar
  88. 88.
    Biggs MB, Medlock GL, Glynis L et al (2015) Metabolic network modeling of microbial communities. WIREs Syst Biol Med 7:317–334CrossRefGoogle Scholar
  89. 89.
    Fleet GH, Lafon-Lafourcade S, Rebéreau-Gayon P (1984) Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl Environ Microbiol 48:1034–1038PubMedPubMedCentralGoogle Scholar
  90. 90.
    Dantas A dS, Lee KK, Raziunaite I et al (2016) Cell biology of Candida albicans-host interactions. Curr Opin Microbiol 34:111–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeUK
  2. 2.Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK

Personalised recommendations