Immunostaining and In Situ Hybridization of the Developing Acoel Nervous System

  • Elena Perea-Atienza
  • Brenda Gavilán
  • Simon G. Sprecher
  • Pedro MartinezEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2047)


The study of acoel morphologies has been recently stimulated by the knowledge that this group of animals represents an early offshoot of the Bilateria. Understanding how organ systems and tissues develop and the molecular underpinnings of the processes involved has become an area of new research. The microscopic anatomy of these organisms is best understood through the systematic use of immunochemistry and in situ hybridization procedures. These methods allow us to map, in precise detail, the expression patterns of genes and proteins, in space and time. With the additional use of genomic resources, they provide us with insights on how a group of “early” bilaterians have diversified over time. As these animals are new to the world of molecular studies, the protocols have involved a lot of new and specific adaptations to their specific anatomical-histological characteristics. Here we explain some of these protocols in detail, with the aim that should prove useful in our much-needed understanding of the origins of bilaterian animals. An anatomical sketch is provided at the beginning as a necessary guide for those not familiar with the Acoela.


Acoela Embryos Juveniles Immunochemistry In situ hybridization FISH methodology Nervous system 



The research in P. Martínez laboratory was carried out with the support of the Spanish Ministry of Science, Grants BFU2006-00898, BFU2009-07383, and BFU2012-32806. E. Perea-Atienza and B. Gavilán were supported by PhD fellowships from the Universitat de Barcelona (APIF). S.G. Sprecher acknowledges the Swiss National Science Foundation 31003A_169993. Elena Perea-Atienza and Brenda Gavilán contributed equally to the development of the described methodology. The authors would also like to thank Kathryn Apse and Prof. Seth Tyler (University of Maine) for letting us publish the acoel morphology diagrams in Fig. 1 of this chapter.


  1. 1.
    Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A (2016) Xenacoelomorpha is the sister group to Nephrozoa. Nature 530:89–93. Scholar
  2. 2.
    Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260. Scholar
  3. 3.
    Baguñà J, Riutort M (2004) The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssays 26:1046–1057CrossRefGoogle Scholar
  4. 4.
    Jondelius U, Wallberg A, Hooge M, Raikova OI (2011) How the worm got its pharynx: phylogeny, classification and bayesian assessment of character evolution in acoela. Syst Biol 60:845–871. Scholar
  5. 5.
    Achatz JG, Chiodin M, Salvenmoser W, Tyler S, Martinez P (2012) The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis). Org Divers Evol 13:267–286CrossRefGoogle Scholar
  6. 6.
    Arroyo AS, López-Escardó D, de Vargas C, Ruiz-Trillo I (2016) Hidden diversity of Acoelomorpha revealed through metabarcoding. Biol Lett 12:20160674. Scholar
  7. 7.
    Smith J, Tyler S (1986) Frontal organs in the Acoelomorpha (Turbellaria): ultrastructure and phylogenetic significance. Hydrobiologia 132:71–78CrossRefGoogle Scholar
  8. 8.
    Ehlers U (1991) Comparative morphology of the statocysts in the Plathelmithes and the Xenoturbellida. Hydrobiologia 227:263–271CrossRefGoogle Scholar
  9. 9.
    Yamasu T (1991) Fine structure and function of ocelli and sagittocysts of acoel flatworms. Hydrobiologia 227:273–282. Scholar
  10. 10.
    Rieger RM, Tyler S, Smith JPS, Rieger GE (1991) Platyhelminthes: Turbellaria. In: Harrsion FW, Bogitsch BJ (eds) Microscopic anatomy of invertebrates. Wiley, New YorkGoogle Scholar
  11. 11.
    Raikova OI, Reuter M, Kotikova EA, Gustafsson MKS (1998) A commissural brain! The pattern of 5-HT immunoreactivity in acoela (Plathelminthes). Zoomorphology 118:69–77. Scholar
  12. 12.
    Reisinger E (1925) Ein landbewohnender Archiannelide. (Zugleich ein Beitrag zur Systematik der Archianneliden). Z Morphol Tiere 3:197–254CrossRefGoogle Scholar
  13. 13.
    Martínez P, Hartenstein V, Sprecher SG (2017) Xenacoelomorpha nervous systems. In Oxford Research Encyclopedia of Neuroscience. Ed. S. Murray Sherman. New York: Oxford University PressGoogle Scholar
  14. 14.
    Jennings JB (1957) Studies on feeding, digestion, and food storage in free-living flatworms (Platyhelminthes: Turbellaria). Biol Bull 112:63–80CrossRefGoogle Scholar
  15. 15.
    Achatz J, Gschwentner R, Rieger R (2005) Symsagittifera smaragdina n. spec., a new acoel (Acoela, Acoelomorpha) of the Mediterranean Sea. Zootaxa 1085:33–45CrossRefGoogle Scholar
  16. 16.
    Pedersen KJ (1964) The cellular organization of Convoluta convoluta, an Acoel Turbellarian: a cytological, histochemical and fine structural study. Z Zellforsch 64:655–687CrossRefGoogle Scholar
  17. 17.
    Hyman LH (1951) The invertebrates: Platyhelminthes and Rhynchocoela. The acoelomate bilateria vol II. McGraw-Hill Book Company, Inc, New YorkGoogle Scholar
  18. 18.
    Hooge M (2001) Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morphol 249:171–194CrossRefGoogle Scholar
  19. 19.
    Hooge M, Tyler S (2006) Concordance of molecular and morphological data: The example of the Acoela. Integr Comp Biol 46:118–124CrossRefGoogle Scholar
  20. 20.
    Semmler H, Bailly X, Wanninger A (2008) Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela). Front Zool 5:1–15. Scholar
  21. 21.
    Henry JQ, Martindale MQ, Boyer BC (2000) The unique developmental program of the acoel flatworm, Neochildia fusca. Dev Biol 220:285–295. Scholar
  22. 22.
    Hejnol A (2015) Acoelomorpha and Xenoturbellida. In: Evolutionary developmental biology of invertebrates, vol 1. Springer Verlag, New York, pp 203–214CrossRefGoogle Scholar
  23. 23.
    Raikova O, Reuter M, Gustafsson MKS, Maule AG, Halton DW, Jondelius U (2004) Evolution of the nervous system in Paraphanostoma (Acoela). Zool Scr:71–88CrossRefGoogle Scholar
  24. 24.
    Semmler H, Chiodin M, Bailly X, Martinez P, Wanninger A (2010) Steps towards a centralized nervous system in basal bilaterians: Insights from neurogenesis of the acoel Symsagittifera roscoffensis. Develop Growth Differ 52:701–713. Scholar
  25. 25.
    Achatz JG, Martinez P (2012) The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Front Zool 9:27CrossRefGoogle Scholar
  26. 26.
    Raikova OI (2004) Neuroanatomy of basal bilaterians (Xenoturbellida, Nemertodermatida, Acoela) and its phylogenetic implications (PhD thesis). Åbo Akademi UniversityGoogle Scholar
  27. 27.
    Perea-Atienza E, Gavilan B, Chiodin M, Abril JF, Hoff KJ, Poustka AJ, Martinez P (2015) The nervous system of Xenacoelomorpha: a genomic perspective. J Exp Biol 218:618–628. Scholar
  28. 28.
    Gavilán B, Perea-Atienza E, Martínez P (2016) Xenacoelomorpha: a case of independent nervous system centralization? Philos Trans R Soc B Biol Sci 371. Scholar
  29. 29.
    De Mulder K, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W, Thaler M, Gorny AK, Hrouda M, Borgonie G, Ladurner P (2009) Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 9:1–17. Scholar
  30. 30.
    Srivastava M, Mazza-Curll KL, Van Wolfswinkel JC, Reddien PW (2014) Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr Biol 24:1107–1113. Scholar
  31. 31.
    Chiodin M, Børve A, Berezikov E, Ladurner P, Martinez P, Hejnol A (2013) Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads. PLoS One 8:e55499. Scholar
  32. 32.
    Albuixech-Crespo B, López-Blanch L, Burguera D, Maeso I, Sánchez-Arrones L, Moreno-Bravo JA, Somorjai I, Pascual-Anaya J, Puelles E, Bovolenta P, Garcia-Fernàndez J, Puelles L, Irimia M, Ferran JL (2017) Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol 15. Scholar
  33. 33.
    Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456:382–386. Scholar
  34. 34.
    Perea-Atienza E, Sprecher SG, Martínez P (2018) Characterization of the bHLH family of transcriptional regulators in the acoel S. roscoffensis and their putative role in neurogenesis. EvoDevo 9:1–16. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Elena Perea-Atienza
    • 1
  • Brenda Gavilán
    • 1
  • Simon G. Sprecher
    • 2
  • Pedro Martinez
    • 1
    • 3
    Email author
  1. 1.Departament de GenèticaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department of BiologyUniversity of FribourgFribourgSwitzerland
  3. 3.Institut Català de Recerca i Estudis Avancats (ICREA)BarcelonaSpain

Personalised recommendations