Generation of Hematopoietic Stem and Progenitor Cells from Human Pluripotent Stem Cells

  • Hideyuki OguroEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2048)


Human pluripotent stem cells (PSCs) have the potential to provide a virtually unlimited supply of cells for transplantation therapy. When combined with recent advances in genome editing technologies, human PSCs could offer various approaches that enable gene therapy, drug discovery, disease modeling, and in vitro modeling of human development. De novo generation of hematopoietic stem cells (HSCs) from human PSCs is an important focus in the field, since it enables autologous HSC transplantation to treat many blood disorders and malignancies. Although culture conditions have been established to generate a broad spectrum of hematopoietic progenitors from human PSCs, it remains a significant challenge to generate bona fide HSCs that possess sustained self-renewal and multilineage differentiation capacities upon transplantation. In this review, recent promising advances in the efforts to generate HSCs and hematopoietic progenitors from human PSCs in vitro and in vivo or from somatic cells are discussed.

Key words

Hematopoietic stem cells Hematopoietic progenitors Human pluripotent stem cells Hemogenic endothelium Hematopoietic differentiation Hematopoietic development 



This work was supported by The Jackson Laboratory. The author thanks William Skarnes for thoughtful reading and editing of the manuscript and apologizes to authors whose papers could not be cited in this review owing to space limitations.


  1. 1.
    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Niederwieser D, Baldomero H, Szer J, Gratwohl M, Aljurf M, Atsuta Y et al (2016) Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey. Bone Marrow Transplant 51(6):778–785PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Giralt S, Costa L, Schriber J, Dipersio J, Maziarz R, McCarty J et al (2014) Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Transplant 20(3):295–308PubMedCrossRefGoogle Scholar
  4. 4.
    Kumar S, Geiger H (2017) HSC niche biology and hsc expansion ex vivo. Trends Mol Med 23(9):799–819PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126(22):5073–5084PubMedPubMedCentralGoogle Scholar
  6. 6.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518(7540):547–551PubMedCrossRefGoogle Scholar
  7. 7.
    McGrath KE, Frame JM, Fegan KH, Bowen JR, Conway SJ, Catherman SC et al (2015) Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep 11(12):1892–1904PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Boiers C, Carrelha J, Lutteropp M, Luc S, Green JC, Azzoni E et al (2013) Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13(5):535–548PubMedCrossRefGoogle Scholar
  9. 9.
    Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez MJ, Dzierzak E (2002) Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 16(5):673–683PubMedCrossRefGoogle Scholar
  11. 11.
    de Bruijn MF, Speck NA, Peeters MC, Dzierzak E (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 19(11):2465–2474PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ottersbach K, Dzierzak E (2005) The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8(3):377–387PubMedCrossRefGoogle Scholar
  13. 13.
    Li Z, Lan Y, He W, Chen D, Wang J, Zhou F et al (2012) Mouse embryonic head as a site for hematopoietic stem cell development. Cell Stem Cell 11(5):663–675PubMedCrossRefGoogle Scholar
  14. 14.
    Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK (2005) The placenta is a niche for hematopoietic stem cells. Dev Cell 8(3):365–375PubMedCrossRefGoogle Scholar
  15. 15.
    Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 98(19):10716–10721PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Nakano T, Kodama H, Honjo T (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265(5175):1098–1101PubMedCrossRefGoogle Scholar
  17. 17.
    Vodyanik MA, Bork JA, Thomson JA, Slukvin II (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105(2):617–626PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88–95PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A et al (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102(3):906–915PubMedCrossRefGoogle Scholar
  20. 20.
    Cerdan C, Rouleau A, Bhatia M (2004) VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 103(7):2504–2512PubMedCrossRefGoogle Scholar
  21. 21.
    Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG (2007) Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 25(9):2206–2214PubMedCrossRefGoogle Scholar
  22. 22.
    Galic Z, Kitchen SG, Kacena A, Subramanian A, Burke B, Cortado R et al (2006) T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci U S A 103(31):11742–11747PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Schmitt TM, Zuniga-Pflucker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17(6):749–756PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, Taghon T et al (2009) Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol 182(11):6879–6888PubMedCrossRefGoogle Scholar
  25. 25.
    Ramos-Mejia V, Melen GJ, Sanchez L, Gutierrez-Aranda I, Ligero G, Cortes JL et al (2010) Nodal/Activin signaling predicts human pluripotent stem cell lines prone to differentiate toward the hematopoietic lineage. Mol Ther 18(12):2173–2181PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62(1):65–74PubMedCrossRefGoogle Scholar
  27. 27.
    Kennedy M, Awong G, Sturgeon CM, Ditadi A, LaMotte-Mohs R, Zuniga-Pflucker JC et al (2012) T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep 2(6):1722–1735PubMedCrossRefGoogle Scholar
  28. 28.
    Woll PS, Morris JK, Painschab MS, Marcus RK, Kohn AD, Biechele TL et al (2008) Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood 111(1):122–131PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wang Y, Nakayama N (2009) WNT and BMP signaling are both required for hematopoietic cell development from human ES cells. Stem Cell Res 3(2-3):113–125PubMedCrossRefGoogle Scholar
  30. 30.
    Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G (2014) Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol 32(6):554–561PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Choi KD, Vodyanik MA, Togarrati PP, Suknuntha K, Kumar A, Samarjeet F et al (2012) Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep 2(3):553–567PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ditadi A, Sturgeon CM, Tober J, Awong G, Kennedy M, Yzaguirre AD et al (2015) Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nat Cell Biol 17(5):580–591PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ackermann M, Liebhaber S, Klusmann JH, Lachmann N (2015) Lost in translation: pluripotent stem cell-derived hematopoiesis. EMBO Mol Med 7(11):1388–1402PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tian X, Woll PS, Morris JK, Linehan JL, Kaufman DS (2006) Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells 24(5):1370–1380PubMedCrossRefGoogle Scholar
  35. 35.
    Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renstrom J, Lang R et al (2008) Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 3(1):85–98PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174(10):6477–6489PubMedCrossRefGoogle Scholar
  37. 37.
    Lu M, Kardel MD, O'Connor MD, Eaves CJ (2009) Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells. Exp Hematol 37(8):924–936PubMedCrossRefGoogle Scholar
  38. 38.
    Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182PubMedCrossRefGoogle Scholar
  39. 39.
    Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS et al (1994) Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci U S A 91(25):12223–12227PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Antonchuk J, Sauvageau G, Humphries RK (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109(1):39–45PubMedCrossRefGoogle Scholar
  41. 41.
    Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109(1):29–37PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wang L, Menendez P, Shojaei F, Li L, Mazurier F, Dick JE et al (2005) Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 201(10):1603–1614PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ramos-Mejia V, Navarro-Montero O, Ayllon V, Bueno C, Romero T, Real PJ et al (2014) HOXA9 promotes hematopoietic commitment of human embryonic stem cells. Blood 124(20):3065–3075PubMedCrossRefGoogle Scholar
  44. 44.
    Dou DR, Calvanese V, Sierra MI, Nguyen AT, Minasian A, Saarikoski P et al (2016) Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol 18(6):595–606PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Marshall H, Morrison A, Studer M, Popperl H, Krumlauf R (1996) Retinoids and hox genes. FASEB J 10(9):969–978PubMedCrossRefGoogle Scholar
  46. 46.
    Chanda B, Ditadi A, Iscove NN, Keller G (2013) Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155(1):215–227PubMedCrossRefGoogle Scholar
  47. 47.
    Doulatov S, Vo LT, Chou SS, Kim PG, Arora N, Li H et al (2013) Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell 13(4):459–470PubMedCrossRefGoogle Scholar
  48. 48.
    Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu YF et al (2017) Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545(7655):432–438PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tan YT, Ye L, Xie F, Beyer AI, Muench MO, Wang J et al (2018) Respecifying human iPSC-derived blood cells into highly engraftable hematopoietic stem and progenitor cells with a single factor. Proc Natl Acad Sci U S A 115(9):2180–2185PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sanjuan-Pla A, Bueno C, Prieto C, Acha P, Stam RW, Marschalek R et al (2015) Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood 126(25):2676–2685PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cudennec C, Nicolas JF (1977) Blood formation in a clonal cell line of mouse teratocarcinoma. J Embryol Exp Morphol 38:203–210PubMedGoogle Scholar
  52. 52.
    Cudennec CA, Johnson GR (1981) Presence of multipotential hemopoietic cells in teratocarcinoma cultures. J Embryol Exp Morphol 61:51–59PubMedGoogle Scholar
  53. 53.
    Cudennec CA, Salaun J (1979) Definitive red blood cell differentiation in a clonal line of mouse teratocarcinoma cultured in vivo in the chick embryo. Cell Differ 8(2):75–82PubMedCrossRefGoogle Scholar
  54. 54.
    Amabile G, Welner RS, Nombela-Arrieta C, D'Alise AM, Di Ruscio A, Ebralidze AK et al (2013) In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood 121(8):1255–1264PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Suzuki N, Yamazaki S, Yamaguchi T, Okabe M, Masaki H, Takaki S et al (2013) Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther 21(7):1424–1431PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Tsukada M, Ota Y, Wilkinson AC, Becker HJ, Osato M, Nakauchi H et al (2017) In vivo generation of engraftable murine hematopoietic stem cells by Gfi1b, c-Fos, and Gata2 overexpression within teratoma. Stem Cell Reports 9(4):1024–1033PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Pereira CF, Chang B, Qiu J, Niu X, Papatsenko D, Hendry CE et al (2013) Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell 13(2):205–218PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Batta K, Florkowska M, Kouskoff V, Lacaud G (2014) Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells. Cell Rep 9(5):1871–1884PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cheng H, Ang HY, AEF C, Li P, Fang HT, Liu TM et al (2016) Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors. Nat Commun 7:13396PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sandler VM, Lis R, Liu Y, Kedem A, James D, Elemento O et al (2014) Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 511(7509):312–318PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lis R, Karrasch CC, Poulos MG, Kunar B, Redmond D, Duran JGB et al (2017) Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature 545(7655):439–445PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cosgun KN, Rahmig S, Mende N, Reinke S, Hauber I, Schafer C et al (2014) Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 15(2):227–238PubMedCrossRefGoogle Scholar
  63. 63.
    McIntosh BE, Brown ME, Duffin BM, Maufort JP, Vereide DT, Slukvin II et al (2015) Nonirradiated NOD,B6.SCID Il2rgamma−/− Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports. 4(2):171–180PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yurino A, Takenaka K, Yamauchi T, Nunomura T, Uehara Y, Jinnouchi F et al (2016) Enhanced reconstitution of human erythropoiesis and thrombopoiesis in an immunodeficient mouse model with kit(Wv) mutations. Stem Cell Reports. 7(3):425–438PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M et al (2010) AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24(10):1785–1788PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL et al (2014) Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 32(4):364–372PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lan P, Tonomura N, Shimizu A, Wang S, Yang YG (2006) Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 108(2):487–492PubMedCrossRefGoogle Scholar
  68. 68.
    Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA et al (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12(11):1316–1322PubMedCrossRefGoogle Scholar
  69. 69.
    Sun X, Xu J, Lu H, Liu W, Miao Z, Sui X et al (2013) Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13(2):230–236PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Parent AV, Russ HA, Khan IS, LaFlam TN, Metzger TC, Anderson MS et al (2013) Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 13(2):219–229PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cellular EngineeringThe Jackson Laboratory for Genomic MedicineFarmingtonUSA

Personalised recommendations