Data Analysis for DNA Stable Isotope Probing Experiments Using Multiple Window High-Resolution SIP

  • Samuel E. Barnett
  • Nicholas D. Youngblut
  • Daniel H. BuckleyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2046)


DNA stable isotope probing (DNA-SIP) allows for the identification of microbes that assimilate isotopically labeled substrates into DNA. Here we describe the analysis of sequencing data using the multiple window high-resolution DNA-SIP method (MW-HR-SIP). MW-HR-SIP has improved accuracy over other methods and is easily implemented on the statistical platform R. We also discuss key experimental parameters to consider when designing DNA-SIP experiments and how these parameters affect accuracy of analysis.

Key words

DNA-SIP Stable isotope probing High throughput sequencing 


  1. 1.
    Pepe-Ranney C, Campbell AN, Koechli CN et al (2016) Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front Microbiol 7.
  2. 2.
    DeRito CM, Pumphrey GM, Madsen EL (2005) Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl Environ Microbiol 71:7858–7865. Scholar
  3. 3.
    Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2007) Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Appl Environ Microbiol 73:3196–3204. Scholar
  4. 4.
    Gupta V, Smemo KA, Yavitt JB, Basiliko N (2012) Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Microb Ecol 63:438–445. Scholar
  5. 5.
    Neufeld JD, Schäfer H, Cox MJ et al (2007) Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1:480–491. Scholar
  6. 6.
    Kovatcheva-Datchary P, Egert M, Maathuis A et al (2009) Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ Microbiol 11:914–926. Scholar
  7. 7.
    Egert M, De Graaf AA, Maathuis A et al (2007) Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing. FEMS Microbiol Ecol 60:126–135. Scholar
  8. 8.
    Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2008) 15N2-DNA-stable isotope probing of diazotrophic methanotrophs in soil. Soil Biol Biochem 40:1272–1283. Scholar
  9. 9.
    Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649. Scholar
  10. 10.
    Jeon CO, Park W, Padmanabhan P et al (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci U S A 100:13591–13596. Scholar
  11. 11.
    Kasai Y, Takahata Y, Manefield M, Watanabe K (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 72:3586–3592. Scholar
  12. 12.
    Youngblut ND, Barnett SE, Buckley DH (2018) SIPSim: a modeling toolkit to predict accuracy and aid design of DNA-SIP experiments. Front Microbiol 9.
  13. 13.
    Youngblut ND, Buckley DH (2014) Intra-genomic variation in G + C content and its implications for DNA stable isotope probing. Environ Microbiol Rep 6:767–775. Scholar
  14. 14.
    Hungate BA, Mau RL, Schwartz E et al (2015) Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol 81:7570–7581. Scholar
  15. 15.
    Youngblut ND, Barnett SE, Buckley DH (2018) HTSSIP: An R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP) experiments. PLoS One 13:e0189616. Scholar
  16. 16.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. Scholar
  17. 17.
    McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. Scholar
  18. 18.
    R Core Team (2018) R: a language and environment for statistical computingGoogle Scholar
  19. 19.
    Wickham H, Chang W (2017) devtools: tools to make developing R packages easierGoogle Scholar
  20. 20.
    Microsoft Corporation, Weston S (2017) doparallel: for each parallel adaptor for the “parallel” packageGoogle Scholar
  21. 21.
    Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40.
  22. 22.
    Wickham H, Francois R, Henry L, Muller K (2018) dplyr: a grammar of data manipulationGoogle Scholar
  23. 23.
    Brbić M, Piškorec M, Vidulin V et al (2016) The landscape of microbial phenotypic traits and associated genes. Nucleic Acids Res 44:10074–10090. Scholar
  24. 24.
    Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. Scholar
  25. 25.
    Truong DT, Franzosa EA, Tickle TL et al (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902–903. Scholar
  26. 26.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Samuel E. Barnett
    • 1
  • Nicholas D. Youngblut
    • 2
  • Daniel H. Buckley
    • 1
    Email author
  1. 1.School of Integrative Plant ScienceCornell UniversityIthacaUSA
  2. 2.Department of Microbiome ScienceMax Planck Institute for Developmental BiologyTübingenGermany

Personalised recommendations