Advertisement

Method Development for DNA and Proteome SIP Analysis of Activated Sludge for Anaerobic Dichloromethane Biodegradation

  • Miao Hu
  • Matthew Lee
  • Ling Zhong
  • Michael J. ManefieldEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2046)

Abstract

Dichloromethane (DCM) is a toxic, dense non-aqueous phase liquid (DNAPL) that pollutes groundwater in all industrialized countries. Fortunately, DCM can be used as the sole source of energy and organic carbon by anaerobic microorganisms and be transformed to benign end products such as acetate, formate, and bicarbonate. However, knowledge around the phylogenetic diversity of anaerobic microorganisms capable of DCM metabolism is limited. The genes and enzymes involved and details of the reaction mechanism are not known. Stable isotope probing (SIP) is a technique used to identify microbes involved in assimilation of elements. The isotopically labeled substrate can be recovered in DNA and protein (i.e., DNA-SIP and protein-SIP) which enables identification of both the microbial taxa and their respective proteins involved in the substrate degradation. Therefore, by applying a combination of SIP techniques with molecular approaches (i.e., Illumina Miseq sequencing and metaproteomics), DCM degrading organisms can be identified and characterized in a manner independent of anaerobic enrichment cultures. In our research, activated sludge from wastewater treatment plant was fed with unlabeled and 13C-labeled DCM, respectively. Here, we provide protocols and technical notes for DNA and protein extraction from activated sludge and present analysis pipelines for downstream molecular techniques.

Key words

Dichloromethane DNA Protein Stable isotope probing (SIP) Activated sludge Metaproteomics Metagenomics 

References

  1. 1.
    Mägli A, Wendt M, Leisinger T (1996) Isolation and characterization of Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy. Arch Microbiol 166:101–108CrossRefGoogle Scholar
  2. 2.
    Mägli A, Messmer M, Leisinger T (1998) Metabolism of dichloromethane by the strict anaerobe Dehalobacterium formicoaceticum. Appl Environ Microbiol 64:646–650PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14:883–894CrossRefGoogle Scholar
  4. 4.
    Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78:1288–1291CrossRefGoogle Scholar
  5. 5.
    Kleindienst S, Higgins SA, Tsementzi D, Chen G, Konstantinidis KT, Mack EE, Löffler FE (2017) ‘Candidatus Dichloromethanomonas elyunquensis’ gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family. Syst Appl Microbiol 40:150–159CrossRefGoogle Scholar
  6. 6.
    Trueba-Santiso A, Parladé E, Rosell M, Lliros M, Mortan SH, Martínez-Alonso M et al (2017) Molecular and carbon isotopic characterization of an anaerobic stable enrichment culture containing Dehalobacterium sp. during dichloromethane fermentation. Sci Total Environ 581:640–648CrossRefGoogle Scholar
  7. 7.
    Dumont MG, Murrell JC (2005) Stable isotope probing - linking microbial identity to function. Nat Rev Microbiol 3:499–504CrossRefGoogle Scholar
  8. 8.
    Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1:e24CrossRefGoogle Scholar
  9. 9.
    Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685CrossRefGoogle Scholar
  10. 10.
    Techtmann SM, Hazen TC (2016) Metagenomic applications in environmental monitoring and bioremediation. J Ind Microbiol Biotechnol 43:1345–1354CrossRefGoogle Scholar
  11. 11.
    Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB et al (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31(2):154–165CrossRefGoogle Scholar
  12. 12.
    Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14:92–97CrossRefGoogle Scholar
  13. 13.
    Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15:3409–3417CrossRefGoogle Scholar
  14. 14.
    Siggins A, Gunnigle E, Abram F (2012) Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol 80:265–280CrossRefGoogle Scholar
  15. 15.
    Jehmlich N, Vogt C, Lünsmann V, Richnow HH, von Bergen M (2016) Protein-SIP in environmental studies. Curr Opin Biotechnol 41:26–33CrossRefGoogle Scholar
  16. 16.
    Herbst FA, Lünsmann V, Kjeldal H, Jehmlich N, Tholey A, von Bergen M et al (2016) Enhancing metaproteomics - the value of models and defined environmental microbial systems. Proteomics 16:783–798CrossRefGoogle Scholar
  17. 17.
    Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW et al (2007) DNA stable-isotope probing. Nat Protoc 2:860–866CrossRefGoogle Scholar
  18. 18.
    Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, Von Bergen M et al (2010) Protein-based stable isotope probing. Nat Protoc 5:1957–1966CrossRefGoogle Scholar
  19. 19.
    Sachsenberg T, Herbst FA, Taubert M, Kermer R, Jehmlich N, von Bergen M et al (2014) MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res 14:619–627CrossRefGoogle Scholar
  20. 20.
    Jameson E, Taubert M, Coyotzi S, Chen Y, Eyice Ö, Schäfer H et al (2017) DNA-, RNA-, and protein-based stable-isotope probing for high-throughput biomarker analysis of active microorganisms. In: Streit WR, Daniel R (eds) Metagenomics: methods and protocols, Methods in molecular biology, vol 1539. Humana Press, New York, NY, pp 57–74CrossRefGoogle Scholar
  21. 21.
    Jehmlich N, von Bergen M (2016) Protocol for performing protein stable isotope probing (protein-SIP) experiments. In: McGenity TJ et al (eds) Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Springer, Heidelberg, pp 199–214CrossRefGoogle Scholar
  22. 22.
    Ding J, Jiang X, Ma M, Zhou B, Guan D, Zhao B et al (2016) Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Appl Soil Ecol 105:187–195CrossRefGoogle Scholar
  23. 23.
    Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G et al (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9:75–88CrossRefGoogle Scholar
  24. 24.
    Roumpeka DD, Wallace RJ, Escalettes F, Fotheringham I, Watson M (2017) A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front Genet 8:23CrossRefGoogle Scholar
  25. 25.
    Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209CrossRefGoogle Scholar
  26. 26.
    Kim M, Lee KH, Yoon SW, Kim BS, Chun J, Yi H (2013) Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform 11:102–113CrossRefGoogle Scholar
  27. 27.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefGoogle Scholar
  28. 28.
    Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676CrossRefGoogle Scholar
  29. 29.
    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119CrossRefGoogle Scholar
  30. 30.
    Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60CrossRefGoogle Scholar
  31. 31.
    Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC et al (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293CrossRefGoogle Scholar
  32. 32.
    Barr JJ, Hastie ML, Fukushima T, Plan MR, Tyson G, Gorman JJ et al (2011) Metaproteomic analysis of laboratory scale phosphorus removal reactors reveals functional insights of aerobic granular sludge. In: Paper presented at the IWA biofilm 2011 conference: processes in biofilm. Tongji University, Shanghai, pp 27–30. October 2011Google Scholar
  33. 33.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906CrossRefGoogle Scholar
  34. 34.
    Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748CrossRefGoogle Scholar
  35. 35.
    Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E et al (2008) OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163CrossRefGoogle Scholar
  36. 36.
    Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Miao Hu
    • 1
  • Matthew Lee
    • 1
  • Ling Zhong
    • 2
  • Michael J. Manefield
    • 1
    • 3
    Email author
  1. 1.UNSW Water Research Centre, School of Civil and Environmental EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Bioanalytical Mass Spectrometry FacilityUniversity of New South WalesSydneyAustralia
  3. 3.School of Chemical EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations