Flow Cytometry of Membrane Purinoreceptors

  • Nicole Schwarz
  • Marten Junge
  • Friedrich Haag
  • Friedrich Koch-NolteEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2041)


Mammalian purinoreceptors respond to extracellular nucleotides and their metabolites, for example, following the release of ATP or NAD+ from cells and their hydrolysis by ectonucleotidases. Membrane purinoreceptors are expressed as ionotropic ligand-gated ion channels designated P2X receptors, or as metabotropic G-protein coupled receptors designated P1 or P2Y receptors, on the cell surface of different cell types. In this chapter, we provide protocols to monitor the expression and activity of purinoreceptors on the cell membrane of living cells by flow cytometry.

Key words

Purinoreceptors Purinergic signaling Flow cytometry Ca2+-influx Externalization of phosphatidylserine Ectodomain shedding Inflammasome P2X7 



The authors would like to acknowledge the EU COST Program (BM1406).


  1. 1.
    Cossarizza A, Chang HD, Radbruch A, Akdis M, Andra I, Annunziato F et al (2017) Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 47:1584–1797CrossRefGoogle Scholar
  2. 2.
    Scheuplein F, Schwarz N, Adriouch S, Krebs C, Bannas P, Rissiek B et al (2009) NAD+ and ATP released from injured cells induce P2X7-dependent shedding of CD62L and externalization of phosphatidylserine by murine T cells. J Immunol 182:2898–2908CrossRefGoogle Scholar
  3. 3.
    Rissiek B, Danquah W, Haag F, Koch-Nolte F (2014) Technical Advance: A new cell preparation strategy that greatly improves the yield of vital and functional Tregs and NKT cells. J Leukoc Biol 95:543–549CrossRefGoogle Scholar
  4. 4.
    Rissiek B, Lukowiak M, Raczkowski F, Magnus T, Mittrucker HW, Koch-Nolte F (2018) In vivo blockade of murine ARTC2.2 during cell preparation preserves the vitality and function of liver tissue-resident memory T cells. Front Immunol 9:1580CrossRefGoogle Scholar
  5. 5.
    Georgiev H, Ravens I, Papadogianni G, Malissen B, Forster R, Bernhardt G (2018) Blocking the ART2.2/P2X7-system is essential to avoid a detrimental bias in functional CD4 T cell studies. Eur J Immunol 48:1078–1081CrossRefGoogle Scholar
  6. 6.
    Bartlett R, Stokes L, Sluyter R (2014) The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 66:638–675CrossRefGoogle Scholar
  7. 7.
    Rissiek B, Haag F, Boyer O, Koch-Nolte F, Adriouch S (2015) P2X7 on mouse T cells: one channel, many functions. Front Immunol 6:204CrossRefGoogle Scholar
  8. 8.
    Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31CrossRefGoogle Scholar
  9. 9.
    Moller S, Jung C, Adriouch S, Dubberke G, Seyfried F, Seman M et al (2007) Monitoring the expression of purinoceptors and nucleotide-metabolizing ecto-enzymes with antibodies directed against proteins in native conformation. Purinergic Signal 3:359–366CrossRefGoogle Scholar
  10. 10.
    Roncador G, Engel P, Maestre L, Anderson AP, Cordell JL, Cragg MS et al (2016) The European antibody network’s practical guide to finding and validating suitable antibodies for research. MAbs 8:27–36CrossRefGoogle Scholar
  11. 11.
    Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 120:1483–1490CrossRefGoogle Scholar
  12. 12.
    King BF (2007) Novel P2X7 receptor antagonists ease the pain. Br J Pharmacol 151:565–567CrossRefGoogle Scholar
  13. 13.
    Danquah W, Meyer-Schwesinger C, Rissiek B, Pinto C, Serracant-Prat A, Amadi M et al (2016) Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci Transl Med 8:366ra162CrossRefGoogle Scholar
  14. 14.
    Koch-Nolte F, Reyelt J, Schossow B, Schwarz N, Scheuplein F, Rothenburg S et al (2007) Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J 21:3490–3498CrossRefGoogle Scholar
  15. 15.
    Sester DP, Thygesen SJ, Sagulenko V, Vajjhala PR, Cridland JA, Vitak N et al (2015) A novel flow cytometric method to assess inflammasome formation. J Immunol 194:455–462CrossRefGoogle Scholar
  16. 16.
    Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, Taylor JJ et al (2014) Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc 9:209–222CrossRefGoogle Scholar
  17. 17.
    Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G et al (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19:571–582CrossRefGoogle Scholar
  18. 18.
    Schwarz N, Fliegert R, Adriouch S, Seman M, Guse AH, Haag F, Koch-Nolte F (2009) Activation of the P2X7 ion channel by soluble and covalently bound ligands. Purinergic Signal 5:139–149CrossRefGoogle Scholar
  19. 19.
    Schwarz N, Drouot L, Nicke A, Fliegert R, Boyer O, Guse AH et al (2012) Alternative splicing of the N-terminal cytosolic and transmembrane domains of P2X7 controls gating of the ion channel by ADP-ribosylation. PLoS One 7:e41269CrossRefGoogle Scholar
  20. 20.
    Fuller SJ, Stokes L, Skarratt KK, Gu BJ, Wiley JS (2009) Genetics of the P2X7 receptor and human disease. Purinergic Signal 5:257–262CrossRefGoogle Scholar
  21. 21.
    Adriouch S, Dox C, Welge V, Seman M, Koch-Nolte F, Haag F (2002) Cutting edge: a natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor. J Immunol 169:4108–4112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Nicole Schwarz
    • 1
  • Marten Junge
    • 1
  • Friedrich Haag
    • 1
  • Friedrich Koch-Nolte
    • 1
    Email author
  1. 1.Institute of ImmunologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations