Advertisement

Using RNA Interference for Purinoceptor Knockdown In Vivo

  • Rebeca Padrão Amorim
  • Iscia Teresinha Lopes Cendes
  • Maria Jose da Silva FernandesEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2041)

Abstract

RNA interference (RNAi) is a powerful post-transcriptional gene silencing (PTGS) induced by small double-stranded RNA (dsRNA). The method allows silencing of genes of interest by translation inhibition or by mRNA degradation. In this chapter, we provide a brief overview of the mechanisms involved in each step of gene silencing. A nonviral infusion of short siRNA into ventricular system of rats was used to study purinoceptor in the rat brain.

Key words

RNAi Hippocampus Purinergic receptor Brain Rat 

Notes

Acknowledgments

The authors thank the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

The authors declare no competing interests.

References

  1. 1.
    Corey DR (2007) RNA learns from antisense. Nat Chem Biol 3:8–11.  https://doi.org/10.1038/nchembio0107-8CrossRefPubMedGoogle Scholar
  2. 2.
    Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.  https://doi.org/10.1038/35078107CrossRefPubMedGoogle Scholar
  3. 3.
    Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.  https://doi.org/10.1038/35888CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    França NR, Mesquita D Jr, Lima AB et al (2010) Interferência por RNA: uma nova alternativa para terapia nas doenças reumáticas. Rev Bras Reumatol 50:695–702.  https://doi.org/10.1590/S0482-50042010000600008CrossRefPubMedGoogle Scholar
  5. 5.
    Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–284CrossRefGoogle Scholar
  6. 6.
    Boudreau RL, Rodríguez-Lebrón E, Davidson BL (2011) RNAi medicine for the brain: progresses and challenges. Hum Mol Genet 20:21–27.  https://doi.org/10.1093/hmg/ddr137CrossRefGoogle Scholar
  7. 7.
    Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563.  https://doi.org/10.1016/j.cell.2005.07.031CrossRefPubMedGoogle Scholar
  8. 8.
    Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366.  https://doi.org/10.1038/35053110CrossRefGoogle Scholar
  9. 9.
    Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112.  https://doi.org/10.1016/j.cell.2007.04.037CrossRefPubMedGoogle Scholar
  10. 10.
    Kim DH, Rossi JJ (2008) RNAi mechanisms and applications. Biotechniques 44:613–616.  https://doi.org/10.2144/000112792CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Meister GM, Landthaler A, Patkaniowska Y et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197.  https://doi.org/10.1016/j.molcel.2004.07.007CrossRefPubMedGoogle Scholar
  12. 12.
    Rand TA, Ginalski K, Gridhin NV et al (2004) Biochemical identification of argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A 101:14385–14389.  https://doi.org/10.1073/pnas.0405913101CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rand TA, Petersen S, Du F et al (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629.  https://doi.org/10.1016/j.cell.2005.10.020CrossRefPubMedGoogle Scholar
  14. 14.
    Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114.  https://doi.org/10.1016/j.tibs.2004.12.007CrossRefPubMedGoogle Scholar
  15. 15.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216CrossRefGoogle Scholar
  16. 16.
    Schwarz DS, Hutvagner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208CrossRefGoogle Scholar
  17. 17.
    Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412.  https://doi.org/10.1038/nature07755CrossRefPubMedGoogle Scholar
  18. 18.
    Fraser AG, Kamath RS, Zipperlen P et al (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330.  https://doi.org/10.1038/35042517CrossRefGoogle Scholar
  19. 19.
    Gönczy P, Echeverri C, Oegema K et al (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408:331–336.  https://doi.org/10.1038/35042526CrossRefPubMedGoogle Scholar
  20. 20.
    Mccaffrey AP, Kay MA (2002) A story of mice and men. Gene Ther 9:1563.  https://doi.org/10.1038/sj.gt.3301890CrossRefPubMedGoogle Scholar
  21. 21.
    Dogini DB, Pascoal VD, Avansini SH et al (2014) The new world of RNAs. Genet Mol Biol 37:285–293CrossRefGoogle Scholar
  22. 22.
    Grimm D (2009) Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev 61:672–703.  https://doi.org/10.1016/j.addr.2009.05.002CrossRefPubMedGoogle Scholar
  23. 23.
    Pascoal VDB (2010) O papel da interleucina-1 beta na fase aguda do modelo de epilepsia do lobo temporal induzido pela pilocarpina. Dissertação. Universidade Estadual de Campinas, São PauloGoogle Scholar
  24. 24.
    Hartmann R, Justesen J, Sarkar SN et al (2003) Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2′-5′-oligoadenylate synthetase. Mol Cell 12:1173–1185CrossRefGoogle Scholar
  25. 25.
    Pei Y, Tuschl T (2006) On the art of identifying effective and specific siRNAs. Nat Methods 3(9):670–676.  https://doi.org/10.1038/nmeth911CrossRefPubMedGoogle Scholar
  26. 26.
    Fedorov Y, Anderson EM, Birmingham A et al (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12:1188–1196.  https://doi.org/10.1261/rna.28106CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Song E, Zhu P, Lee SK et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717.  https://doi.org/10.1038/nbt1101CrossRefPubMedGoogle Scholar
  28. 28.
    Hassani Z, Lemkine GF, Erbacher P et al (2005) Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J Gene Med 7:198–207.  https://doi.org/10.1002/jgm.659CrossRefPubMedGoogle Scholar
  29. 29.
    Pardridge WM (2007) Blood–brain barrier delivery. Drug Discov Today 12:54–61.  https://doi.org/10.1016/j.drudis.2006.10.013CrossRefPubMedGoogle Scholar
  30. 30.
    Boorn JGVD, Schlee M, Coch C et al (2011) SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29:325–326.  https://doi.org/10.1038/nbt.1830CrossRefPubMedGoogle Scholar
  31. 31.
    Lu M, Xing H, Xun Z et al (2018) Exosome-based small RNA delivery: progress and prospects. Asian J Pharm Sci 13:1–11.  https://doi.org/10.1016/j.ajps.2017.07.008CrossRefGoogle Scholar
  32. 32.
    Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43.  https://doi.org/10.1038/nature05901CrossRefPubMedGoogle Scholar
  33. 33.
    Kim SS, Ye C, Kumar P et al (2010) Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol Ther 18:993–1001.  https://doi.org/10.1038/mt.2010.27CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Amorim RP, Araújo MGL, Valero J et al (2017) Silencing of P2X7R by RNA interference in the hippocampus can attenuate morphological and behavioral impact of pilocarpine-induced epilepsy. Purinergic Signal 13:467–478.  https://doi.org/10.1007/s11302-017-9573-4CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Burnstock G (2013) Purinergic mechanisms and pain—an update. Eur J Pharmacol 716:24–40.  https://doi.org/10.1016/j.ejphar.2013.01.078CrossRefPubMedGoogle Scholar
  36. 36.
    Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590.  https://doi.org/10.1038/nrd2605CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Abbracchio MP, Burnstock G, Verkhratsky A et al (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29.  https://doi.org/10.1016/j.tins.2008.10.001CrossRefPubMedGoogle Scholar
  38. 38.
    Sperlágh B, Illes P (2014) P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 35:537–547.  https://doi.org/10.1016/j.tips.2014.08.002CrossRefPubMedGoogle Scholar
  39. 39.
    Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082.  https://doi.org/10.1038/sj.emboj.7601378CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Engel T, Gomez-Villafuertes R, Tanaka K et al (2012) Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 26:1616–1628.  https://doi.org/10.1096/fj.11-196089CrossRefPubMedGoogle Scholar
  41. 41.
    Xiang Z, Burnstock G (2005) Expression of P2X receptors on rat microglial cells during early development. Glia 52:119–126.  https://doi.org/10.1002/glia.20227CrossRefPubMedGoogle Scholar
  42. 42.
    Sim JA, Young MT, Sung HY et al (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314.  https://doi.org/10.1523/JNEUROSCI.1469-04.2004CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Armstrong JN, Brust TB, Lewis RG et al (2002) Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J Neurosci 22:5938–5945. doi:20026618CrossRefGoogle Scholar
  44. 44.
    Sperlágh B, Köfalvi A, Deuchars J et al (2002) Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem 81(6):1196–1211CrossRefGoogle Scholar
  45. 45.
    Di Virgilio F, Ben DD, Sarti AC et al (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31.  https://doi.org/10.1016/j.immuni.2017.06.020CrossRefPubMedGoogle Scholar
  46. 46.
    National Center for Biotechnology Information, US National Library of Medicine, Rockville Pike. https://www.ncbi.nlm.nih.gov/nuccore/. Accessed Sept 2018
  47. 47.
    National Center for Biotechnology Information, US National Library of Medicine, Rockville Pike. www.ncbi.nlm.nih.gov/BLAST. Accessed Sept 2018
  48. 48.
    Pereira TC, Pascoal VDB, Secolin R et al (2007) Strand analysis, a free online program for the computational identification of the best RNA interference (RNAi) targets based on Gibbs free energy. Genet Mol Biol 30(4):1206–1208.  https://doi.org/10.1590/S1415-47572007000600030CrossRefGoogle Scholar
  49. 49.
    Pascoal VDB, Marchesini RB, Matos AHB et al (2010) The il1β have a protective action in the acute phase of the pilocarpine-induced epilepsy model. J Epilepsy Clin Neurophysiol 16(3):97–99.  https://doi.org/10.1590/S1676-26492010000300003CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Rebeca Padrão Amorim
    • 1
  • Iscia Teresinha Lopes Cendes
    • 3
  • Maria Jose da Silva Fernandes
    • 1
    • 2
    Email author
  1. 1.Departamento de Neurologia e Neurocirurgia, Disciplina de NeurociênciaUniversidade Federal de São Paulo—UNIFESPSão PauloBrazil
  2. 2.Escola Paulista de MedicinaUniversidade Federal de SÐo Paulo (EPM/UNIFESP)São PauloBrazil
  3. 3.Departamento de Genetica MédicaEscola de Ciências Médicas da Universidade de Campinas—UNICAMPCampinasBrazil

Personalised recommendations