Advertisement

Utilization of Shock Tubes in Blast Injury Research

  • Ibolja CernakEmail author
Protocol
Part of the Neuromethods book series (NM, volume 149)

Abstract

Accumulating evidence shows the overwhelming prevalence of explosive injuries in current military actions. This underlines the pressing need for better understanding the mechanisms, progress, and outcomes of injuries caused by explosions and thus for intensified experimental research. Since a full understanding of blast physics is a prerequisite for developing and using appropriate experimental models, this chapter provides a short overview on the physics of blast. , Additionally, high attention is paid to detailing the requirements for adequate shock tube setups capable of reproducing militarily and clinically relevant conditions guided by real-life blast scenarios and mimicking meaningful biological responses.

Key words

Blast Overpressure Blast injury Shock tube Experimental models Blast-induced neurotrauma 

References

  1. 1.
    Hoencamp R, Vermetten E, Tan EC, Putter H, Leenen LP, Hamming JF (2014) Systematic review of the prevalence and characteristics of battle casualties from NATO coalition forces in Iraq and Afghanistan. Injury 45(7):1028–1034.  https://doi.org/10.1016/j.injury.2014.02.012PubMedCrossRefGoogle Scholar
  2. 2.
    Schoenfeld AJ, Dunn JC, Bader JO, Belmont PJ Jr (2013) The nature and extent of war injuries sustained by combat specialty personnel killed and wounded in Afghanistan and Iraq, 2003–2011. J Trauma Acute Care Surg 75(2):287–291.  https://doi.org/10.1097/TA.0b013e31829a0970PubMedCrossRefGoogle Scholar
  3. 3.
    Belmont PJ Jr, McCriskin BJ, Sieg RN, Burks R, Schoenfeld AJ (2012) Combat wounds in Iraq and Afghanistan from 2005 to 2009. J Trauma Acute Care Surg 73(1):3–12.  https://doi.org/10.1097/TA.0b013e318250bfb4PubMedCrossRefGoogle Scholar
  4. 4.
    Ritenour AE, Blackbourne LH, Kelly JF, McLaughlin DF, Pearse LA, Holcomb JB, Wade CE (2010) Incidence of primary blast injury in US military overseas contingency operations: a retrospective study. Ann Surg 251(6):1140–1144.  https://doi.org/10.1097/SLA.0b013e3181e01270PubMedCrossRefGoogle Scholar
  5. 5.
    Eskridge SL, Macera CA, Galarneau MR, Holbrook TL, Woodruff SI, MacGregor AJ, Morton DJ, Shaffer RA (2012) Injuries from combat explosions in Iraq: injury type, location, and severity. Injury 43(10):1678–1682.  https://doi.org/10.1016/j.injury.2012.05.027PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cernak I, Noble-Haeusslein L (2014) Pathophysiology of blast injury. In: Institute of Medicine (ed) Gulf war and health, Long-term effects of blast exposures, vol 9. The National Academies Press, Wahington, DC, pp 33–83Google Scholar
  7. 7.
    Rossle R (1950) Pathology of blast effects. In: USAF School of Aviation Medicine (ed) German aviation medicine, World War II, vol 2. Department of the Air Force, Washington, DC, pp 1260–1273Google Scholar
  8. 8.
    Owen-Smith M (1979) Bomb blast injuries: in an explosive situation. Nurs Mirror 149(13):35–39PubMedGoogle Scholar
  9. 9.
    Cernak I, Noble-Haeusslein LJ (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30(2):255–266.  https://doi.org/10.1038/jcbfm.2009.203PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Champion HR, Holcomb JB, Young LA (2009) Injuries from explosions: physics, biophysics, pathology, and required research focus. J Trauma 66(5):1468–1477; discussion 1477.  https://doi.org/10.1097/TA.0b013e3181a27e7fPubMedCrossRefGoogle Scholar
  11. 11.
    de Candole CA (1967) Blast injury. Can Med Assoc J 96(4):207–214PubMedPubMedCentralGoogle Scholar
  12. 12.
    Rice D, Heck J (2000) Terrorist bombings: ballistics, patterns of blast injury and tactical emergency care. Tactical Edge J Summer, 53–55Google Scholar
  13. 13.
    Ben-Dor C, Igra O, Elperin T (2001) Handbook of shock waves. Academic Press, San DiegoGoogle Scholar
  14. 14.
    Mainiero R, Sapko M (1996) Blast and fire propagation in uderground facilities. Defense Nuclear Agency, Alexandria, VAGoogle Scholar
  15. 15.
    DePalma RG, Burris DG, Champion HR, Hodgson MJ (2005) Blast injuries. N Engl J Med 352(13):1335–1342.  https://doi.org/10.1056/NEJMra042083. 352/13/1335 [pii]PubMedCrossRefGoogle Scholar
  16. 16.
    Clemedson CJ, Jonsson A (1961) Transmission of elastic disturbances caused by air shock waves in a living body. J Appl Physiol 16:426–430PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Richmond DR, Bowen IG, White CS (1961) Tertiary blast effects. Effects of impact on mice, rats, guinea pigs and rabbits. Aerosp Med 32:789–805PubMedGoogle Scholar
  18. 18.
    Mellor SG (1988) The pathogenesis of blast injury and its management. Br J Hosp Med 39(6):536–539PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kluger Y, Nimrod A, Biderman P, Mayo A, Sorkin P (2007) The quinary pattern of blast injury. Am J Disaster Med 2(1):21–25PubMedCrossRefGoogle Scholar
  20. 20.
    Moss WC, King MJ, Blackman EG (2009) Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys Rev Lett 103(10):108702PubMedCrossRefGoogle Scholar
  21. 21.
    Needham CE, Ritzel D, Rule GT, Wiri S, Young L (2015) Blast testing issues and TBI: experimental models that lead to wrong conclusions. Front Neurol 6:72.  https://doi.org/10.3389/fneur.2015.00072PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cernak I (2014) Blast-induced neurotrauma models and their requirements. Front Neurol 5:128.  https://doi.org/10.3389/fneur.2014.00128PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cernak I, Savic VJ, Lazarov A, Joksimovic M, Markovic S (1999) Neuroendocrine responses following graded traumatic brain injury in male adults. Brain Inj 13(12):1005–1015PubMedCrossRefGoogle Scholar
  24. 24.
    Wilkinson CW, Pagulayan KF, Petrie EC, Mayer CL, Colasurdo EA, Shofer JB, Hart KL, Hoff D, Tarabochia MA, Peskind ER (2012) High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury. Front Neurol 3:11.  https://doi.org/10.3389/fneur.2012.00011PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cernak I, Savic J, Lazarov A (1997) Relations among plasma prolactin, testosterone, and injury severity in war casualties. World J Surg 21(3):240–245. discussion 246PubMedCrossRefGoogle Scholar
  26. 26.
    Brenner LA, Bahraini N, Hernandez TD (2012) Perspectives on creating clinically relevant blast models for mild traumatic brain injury and post traumatic stress disorder symptoms. Front Neurol 3:31.  https://doi.org/10.3389/fneur.2012.00031PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cernak I, Savic J, Ignjatovic D, Jevtic M (1999) Blast injury from explosive munitions. J Trauma 47(1):96–103; discussion 103–104PubMedCrossRefGoogle Scholar
  28. 28.
    Cernak I (2005) Animal models of head trauma. NeuroRx 2(3):410–422.  https://doi.org/10.1602/neurorx.2.3.410PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cernak I, Merkle AC, Koliatsos VE, Bilik JM, Luong QT, Mahota TM, Xu L, Slack N, Windle D, Ahmed FA (2011) The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol Dis 41(2):538–551.  https://doi.org/10.1016/j.nbd.2010.10.025PubMedCrossRefGoogle Scholar
  30. 30.
    Chavko M, Watanabe T, Adeeb S, Lankasky J, Ahlers ST, McCarron RM (2011) Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J Neurosci Methods 195(1):61–66.  https://doi.org/10.1016/j.jneumeth.2010.11.019PubMedCrossRefGoogle Scholar
  31. 31.
    Ahlers ST, Vasserman-Stokes E, Shaughness MC, Hall AA, Shear DA, Chavko M, McCarron RM, Stone JR (2012) Assessment of the effects of acute and repeated exposure to blast overpressure in rodents: toward a greater understanding of blast and the potential ramifications for injury in humans exposed to blast. Front Neurol 3:32.  https://doi.org/10.3389/fneur.2012.00032PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nishida M (2001) Shock tubes and tunnels: facilities, instrumentation, and techniques. Shock tubes. In: Ben-Dor C, Igra O, Elperin T (eds) Handbook of shock waves, vol 1. Academic, San Diego, pp 553–585CrossRefGoogle Scholar
  33. 33.
    Robey R (2001) Shock tubes and tunnels: facilities, instrumentation, and techniques. Blast tubes. In: Ben-Dor C, Igra O, Elperin T (eds) Handbook of shock waves, vol 1. Academic, San Diego, pp 623–650CrossRefGoogle Scholar
  34. 34.
    Reneer DV, Hisel RD, Hoffman JM, Kryscio RJ, Lusk BT, Geddes JW (2011) A multi-mode shock tube for investigation of blast-induced traumatic brain injury. J Neurotrauma 28(1):95–104.  https://doi.org/10.1089/neu.2010.1513PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Celander H, Clemedson CJ, Ericsson UA, Hultman HI (1955) A study on the relation between the duration of a shock wave and the severity of the blast injury produced by it. Acta Physiol Scand 33(1):14–18PubMedCrossRefGoogle Scholar
  36. 36.
    Sawyer TW, Wang Y, Ritzel DV, Josey T, Villanueva M, Shei Y, Nelson P, Hennes G, Weiss T, Vair C, Fan C, Barnes J (2016) High-fidelity simulation of primary blast: direct effects on the head. J Neurotrauma.  https://doi.org/10.1089/neu.2015.3914PubMedCrossRefGoogle Scholar
  37. 37.
    Lu FK, Wilson DR (2003) Detonation driver for enhancing shock tube performance. Shock Waves 12:457–468CrossRefGoogle Scholar
  38. 38.
    Bradley JN, Robinson PA (1967) Studies in expanded shock tube flows. I. Probe studies of the expansion process. Proc R Soc A 301:285–302CrossRefGoogle Scholar
  39. 39.
    Cernak I (2015) Blast injuries and blast-induced neurotrauma - overview of pathophysiology and experimental knowledge: models and findings. In: Kobeissy F (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects, Frontiers in Neuroengineering Series. CRC Press, Boca Raton, FL, pp 629–642Google Scholar
  40. 40.
    Ngo T, Mendis P, Gupta A, Ramsay J (2007) Blast loading and blast effects on structures - an overview. Electronic J Struct Eng Load Struct:76–91Google Scholar
  41. 41.
    Reneer DV (2012) Blast-induced brain injury: influence of shockwave components. University of Kentucky, Lexington, KentuckyGoogle Scholar
  42. 42.
    Anderson JD (2003) Modern compressible flow: with historical perspective, 3rd edn. McGraw-Hill, BostonGoogle Scholar
  43. 43.
    Al-Falahi A, Yusoff MZ, Yusaf T (2010) Numerical simulation of inviscid transient flows in shock tube and its validations. Int J Math Phys Eng Sci 4(1):1–11Google Scholar
  44. 44.
    Cole LK, Karagozian AR, Cambier J-L (2012) Stability of flame-shock coupling in detonation waves: 1D dynamics. Combust Sci Technol 184(10–11):1502–1525CrossRefGoogle Scholar
  45. 45.
    Dirjish M (2012) What’s the difference between piezoelectric and piezoresistive components? Electronic DesignGoogle Scholar
  46. 46.
    Carter S, Ned A, Chivers J, Bemis A (2016) Selecting piezoresistive vs. piezoelectric pressure transducers. Kulite Semiconductor Products, Inc - Industry/Kulite General Overview, Leonia, NJ, p 25Google Scholar
  47. 47.
    PCB Piezotronics (2016) Test & measurement and sensors & instrumentation (acceleration & vibration, acoustics, pressure, force, load, strain, shock, & torque). PCB Piezotronics. http://www.pcb.com/files/publication.pdf. Accessed 29 Apr 2016
  48. 48.
    Rude G, Lee J (2013) Evaluation of pressure transducers for the measurement of transmitted shockwave profiles in biological tissues. Defence R&D Canada Technical Memorandum DRDC Suffield TM-2013-056Google Scholar
  49. 49.
    Model 137A22 ICP Pressure Sensor Installation and Operating Manual (2019) PCB Piezoelectronics. http://www.pcb.com/Products.aspx?m=137B22A. Accessed 12 June 2019Google Scholar
  50. 50.
    Reneer DV, Crowdus CA, Ghoshai S, Corkins J, Hisel RD, Lusk BT, Geddes JW (2014) Extent of cerebrovascular disruption following blast exposure is influenced by the duration of the positive phase in addition to peak overpressure. J Neurol Neurophysiol 5(2):1–8.  https://doi.org/10.4172/2155-9562.1000188CrossRefGoogle Scholar
  51. 51.
    Endevco Piezoresistive pressure transducer Model 8530C -15, -50, -100 (2016) Meggitt sensing systems. http://www.endevco.com/wp-content/uploads/8530C_datasheet.pdf. Accessed 29 Apr 2016Google Scholar
  52. 52.
    Hooke R (1665) Micrographia: some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon, vol LVIII. Royal Society of London, LondonCrossRefGoogle Scholar
  53. 53.
    Rienitz J (1975) Schlieren experiment 300 years ago. Nature 254(5498):293–295.  https://doi.org/10.1038/254293a0CrossRefGoogle Scholar
  54. 54.
    Bander JA, Sanzone G (1974) An improved laser-schlieren system for measurement of shock-wave velocity. Rev Sci Instrum 45(7):949–951CrossRefGoogle Scholar
  55. 55.
    Kiefer JH, Lutz RW (1965) Simple quantitative schlieren technique of high sensitiity for shock tube densitometry. Phys Fluids 8:1393–1394CrossRefGoogle Scholar
  56. 56.
    Huber BR, Meabon JS, Martin TJ, Mourad PD, Bennett R, Kraemer BC, Cernak I, Petrie EC, Emery MJ, Swenson ER, Mayer C, Mehic E, Peskind ER, Cook DG (2013) Blast exposure causes early and persistent aberrant phospho- and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury. J Alzheimers Dis 37(2):309–323.  https://doi.org/10.3233/jad-130182PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ritzel DV, Parks SA, Roseveare J, Rude G, Sawyer TW (2012) Experimental blast simulation for injury studies. In: RTO-MP-HFM-207, Halifax, Canada vol 11. pp 1–20Google Scholar
  58. 58.
    Condon JA, Lottero RE, Loucks RB (1997) Construction and testing of the ARL 1.68-m diameter shock tube exit jet spreader for non-deal blast simulation. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MDGoogle Scholar
  59. 59.
    De S, Thangadurai M (2011) Numerical simulation of shock tube generated vortex: effects of numerics. Int J Comput Fluid Dyn 25(6):345–354CrossRefGoogle Scholar
  60. 60.
    Brouillette M, Hebert C (1997) Propagation and interaction of shock-generated vortices. Fluid Dyn Res 21:159–169CrossRefGoogle Scholar
  61. 61.
    Brun R (2009) Shock tubes and shock tunnels: design and experiments. Universite dAix-Marseillen, FranceGoogle Scholar
  62. 62.
    Sundaramurthy A, Alai A, Ganpule S, Holmberg A, Plougonven E, Chandra N (2012) Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model. J Neurotrauma 29(13):2352–2364.  https://doi.org/10.1089/neu.2012.2413PubMedCrossRefGoogle Scholar
  63. 63.
    Varas JM, Phillipens M, Meijer SR, van den Berg AC, Sibma PC, van Bree JLM, de Vries DVWM (2011) Physics of IED blast shock tube simulations for mTBI research. Front Neurol 2(58):1–14.  https://doi.org/10.3389/fneur.2011.00058CrossRefGoogle Scholar
  64. 64.
    Haselbacher A, Balachandar S, Kieffer SW (2007) Open-ended shock tube flows: influence of pressure ration and diaphragm position. AIAAA J 45:1917–1929CrossRefGoogle Scholar
  65. 65.
    Svetlov SI, Prima V, Glushakova O, Svetlov A, Kirk D, Gutierrez H, Serebruany V, Curley K, Wang KKW, Hayes RL (2012) Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to “composite” blast. Front Neurol 3:15.  https://doi.org/10.3389/fneur.2012.00015PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Svetlov SI, Prima V, Kirk DR, Gutierrez H, Curley KC, Hayes RL, Wang KK (2010) Morphologic and biochemical characterization of brain injury in a model of controlled blast overpressure exposure. J Trauma 69(4):795–804.  https://doi.org/10.1097/TA.0b013e3181bbd885PubMedCrossRefGoogle Scholar
  67. 67.
    Desmoulin GT, Dionne JP (2009) Blast-induced neurotrauma: surrogate use, loading mechanisms, and cellular responses. J Trauma 67(5):1113–1122.  https://doi.org/10.1097/TA.0b013e3181bb8e84PubMedCrossRefGoogle Scholar
  68. 68.
    Ethridge NH, Lottero RE, Wortman JD, Bertrand BP (1984) Computational and experimental studies of blockage effects in a blast simulator. US Army Armament Research and Development Center, Aberdeem Proving Ground, Aberdeem, MDGoogle Scholar
  69. 69.
    Rankine WJM (1870) On the thermodynamic theory of waves of finite longitudinal disturbances. Philos Trans R Soc Lond 160:277–288.  https://doi.org/10.1098/rstl.1870.0015CrossRefGoogle Scholar
  70. 70.
    Huganiot H (1887) Memoire sur la propagation des mouvements dans les corps et specialement dans les gaz parfaits (premiere partie) [Memoir on propagation of movements in bodies, especially perfect gases (first part)]. Journal de l'Ecole Polytechnique 57:3–97Google Scholar
  71. 71.
    Huganiot H (1889) Memoire sur la propagation des mouvements dans les corps et specialement dans les gaz parfaits (deuxieme partie) [Memoir on the propagation of movements in bodies, epsecially perfect gases (second part)]. Journal de l'Ecole Polytechnique 58:1–125Google Scholar
  72. 72.
    Needham CE (2010) The Rankine-Huganiot relations. In: Needham CE (ed) Blast waves. Shock wave and high pressure phenomena, 1st edn. Springer, Berlin, pp 9–17Google Scholar
  73. 73.
    Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, Upreti C, Kracht JM, Ericsson M, Wojnarowicz MW, Goletiani CJ, Maglakelidze GM, Casey N, Moncaster JA, Minaeva O, Moir RD, Nowinski CJ, Stern RA, Cantu RC, Geiling J, Blusztajn JK, Wolozin BL, Ikezu T, Stein TD, Budson AE, Kowall NW, Chargin D, Sharon A, Saman S, Hall GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee AC (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 4(134):134ra160.  https://doi.org/10.1126/scitranslmed.3003716CrossRefGoogle Scholar
  74. 74.
    Bass CR, Rafaels KA, Salzar RS (2008) Pulmonary injury risk assessment for short-duration blasts. J Trauma 65(3):604–615.  https://doi.org/10.1097/TA.0b013e3181454ab4. 00005373-200809000-00014 [pii]PubMedCrossRefGoogle Scholar
  75. 75.
    Bass CR, Panzer MB, Rafaels KA, Wood G, Shridharani J, Capehart B (2012) Brain injuries from blast. Ann Biomed Eng 40(1):185–202.  https://doi.org/10.1007/s10439-011-0424-0PubMedCrossRefGoogle Scholar
  76. 76.
    Bowen IG, Holladay A, Fletcher ER, Richmond DR, White CS (1965) A fluid-mechanical model of the thoraco-abdominal system with applications to blast biology. Technical Progress Report US Defense Technical Information Center, Accession Number AD0469913. https://apps.dtic.mil/dtic/tr/fulltext/u2/469913.pdfGoogle Scholar
  77. 77.
    Bowen IG, Fletcher ER, Richmond D (1968) Estimate of man’s tolerance to the direct effects of air blast. U.S. Defense Atomic Support Agency, Washington, DCCrossRefGoogle Scholar
  78. 78.
    Bauman RA, Ling G, Tong L, Januszkiewicz A, Agoston D, Delanerolle N, Kim Y, Ritzel D, Bell R, Ecklund J, Armonda R, Bandak F, Parks S (2009) An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J Neurotrauma 26(6):841–860.  https://doi.org/10.1089/neu.2009-0898PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Dal Cengio Leonardi A, Keane NJ, Bir CA, Ryan AG, Xu L, Vandevord PJ (2012) Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat. J Biomech 45(15):2595–2602.  https://doi.org/10.1016/j.jbiomech.2012.08.024PubMedCrossRefGoogle Scholar
  80. 80.
    Saljo A, Bolouri H, Mayorga M, Svensson B, Hamberger A (2010) Low-level blast raises intracranial pressure and impairs cognitive function in rats: prophylaxis with processed cereal feed. J Neurotrauma 27(2):383–389.  https://doi.org/10.1089/neu.2009.1053PubMedCrossRefGoogle Scholar
  81. 81.
    Vandevord PJ, Bolander R, Sajja VS, Hay K, Bir CA (2012) Mild neurotrauma indicates a range-specific pressure response to low level shock wave exposure. Ann Biomed Eng 40(1):227–236.  https://doi.org/10.1007/s10439-011-0420-4PubMedCrossRefGoogle Scholar
  82. 82.
    Mathis JT, Clutter JK (2007) Evaluation of orientation and environmental factors on the blast hazards to bomb suit wearers. Appl Ergon 38(5):567–579.  https://doi.org/10.1016/j.apergo.2006.08.006PubMedCrossRefGoogle Scholar
  83. 83.
    Richmond DR, Damon EG, Fletcher ER, Bowen IG, White CS (1968) The relationship between selected blast-wave parameters and the response of mammals exposed to air blast. Ann N Y Acad Sci 152(1):103–121PubMedCrossRefGoogle Scholar
  84. 84.
    Koliatsos VE, Cernak I, Xu L, Song Y, Savonenko A, Crain BJ, Eberhart CG, Frangakis CE, Melnikova T, Kim H, Lee D (2011) A mouse model of blast injury to brain: initial pathological, neuropathological, and behavioral characterization. J Neuropathol Exp Neurol 70(5):399–416.  https://doi.org/10.1097/NEN.0b013e3182189f06PubMedCrossRefGoogle Scholar
  85. 85.
    Elsayed NM (1997) Toxicology of blast overpressure. Toxicology 121(1):1–15PubMedCrossRefGoogle Scholar
  86. 86.
    Risling M (2010) Blast induced brain injuries - a grand challenge in TBI research. Front Neurol 1:1.  https://doi.org/10.3389/fneur.2010.00001PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Jaffin JH, McKinney L, Kinney RC, Cunningham JA, Moritz DM, Kraimer JM, Graeber GM, Moe JB, Salander JM, Harmon JW (1987) A laboratory model for studying blast overpressure injury. J Trauma 27(4):349–356PubMedCrossRefGoogle Scholar
  88. 88.
    Irwin RJ, Lerner MR, Bealer JF, Lightfoot SA, Brackett DJ, Tuggle DW (1998) Global primary blast injury: a rat model. J Okla State Med Assoc 91(7):387–392PubMedGoogle Scholar
  89. 89.
    Long JB, Bentley TL, Wessner KA, Cerone C, Sweeney S, Bauman RA (2009) Blast overpressure in rats: recreating a battlefield injury in the laboratory. J Neurotrauma 26(6):827–840.  https://doi.org/10.1089/neu.2008.0748PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Clemedson CJ, Elstorp L, Pettersson H, Sundqvist AB (1966) Changes of elastic properties of lungs of rabbits in air blast injury. Aerosp Med 37(11):1125–1130PubMedGoogle Scholar
  91. 91.
    Cernak I, Malicevic Z, Prokic V, Zunic G, Djurdjevic D, Ilic S, Savic J (1997) Indirect neurotrauma caused by pulmonary blast injury: development and prognosis. Int Rev Armed Forces Med Serv 52(4/5/6):114–120Google Scholar
  92. 92.
    Damon EG, Yelverton JT, Luft UC, Mitchell K Jr, Jones RK (1971) Acute effects of air blast on pulmonary function in dogs and sheep. Aerosp Med 42(1):1–9PubMedGoogle Scholar
  93. 93.
    Mason W, Damon TG, Dickinson AR, Nevison TO Jr (1971) Arterial gas emboli after blast injury. Proc Soc Exp Biol Med 136(4):1253–1255PubMedCrossRefGoogle Scholar
  94. 94.
    Axelsson H, Yelverton JT (1996) Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment. J Trauma 40(3 Suppl):S31–S37PubMedCrossRefGoogle Scholar
  95. 95.
    Mundie TG, Dodd KT, Lagutchik MS, Morris JR, Martin D (2000) Effects of blast exposure on exercise performance in sheep. J Trauma 48(6):1115–1121PubMedCrossRefGoogle Scholar
  96. 96.
    Savic J, Tatic V, Ignjatovic D, Mrda V, Erdeljan D, Cernak I, Vujnov S, Simovic M, Andelic G, Duknic M (1991) Pathophysiologic reactions in sheep to blast waves from detonation of aerosol explosives. Vojnosanit Pregl 48(6):499–506PubMedGoogle Scholar
  97. 97.
    Axelsson H, Hjelmqvist H, Medin A, Persson JK, Suneson A (2000) Physiological changes in pigs exposed to a blast wave from a detonating high-explosive charge. Mil Med 165(2):119–126PubMedCrossRefGoogle Scholar
  98. 98.
    Lu J, Ng KC, Ling G, Wu J, Poon DJ, Kan EM, Tan MH, Wu YJ, Li P, Moochhala S, Yap E, Lee LK, Teo M, Yeh IB, Sergio DM, Chua F, Kumar SD, Ling EA (2012) Effect of blast exposure on the brain structure and cognition in Macaca fascicularis. J Neurotrauma 29(7):1434–1454.  https://doi.org/10.1089/neu.2010.1591PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Bogo V, Hutton RA, Bruner A (1971) The effects of airblast on discriminated avoidance behavior in rhesus monkeys. In: Technical Progress Report on Contract No. DA-49-146-XZ-372, vol DASA 2659. Defense Nuclear Agency, Washington, DC, pp 1–32Google Scholar
  100. 100.
    Por ED, Choi JH, Lund BJ (2016) Low-level blast exposure increases transient receptor potential Vanilloid 1 (TRPV1) expression in the rat cornea. Curr Eye Res 41(10):1294–1301.  https://doi.org/10.3109/02713683.2015.1122812PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bricker-Anthony C, Hines-Beard J, Rex TS (2016) Eye-directed overpressure airwave-induced trauma causes lasting damage to the anterior and posterior globe: a model for testing cell-based therapies. J Ocular Pharmacol Therap.  https://doi.org/10.1089/jop.2015.0104PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Cernak I, Wang Z, Jiang J, Bian X, Savic J (2001) Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J Trauma 50(4):695–706PubMedCrossRefGoogle Scholar
  103. 103.
    Eftaxiopoulou T, Barnett-Vanes A, Arora H, Macdonald W, Nguyen TT, Itadani M, Sharrock AE, Britzman D, Proud WG, Bull AM, Rankin SM (2016) Prolonged but not short-duration blast waves elicit acute inflammation in a rodent model of primary blast limb trauma. Injury 47(3):625–632.  https://doi.org/10.1016/j.injury.2016.01.017PubMedCrossRefGoogle Scholar
  104. 104.
    Spear AM, Davies EM, Taylor C, Whiting R, Macildowie S, Kirkman E, Midwinter M, Watts SA (2015) Blast wave exposure to the extremities causes endothelial activation and damage. Shock (Augusta, Ga) 44(5):470–478.  https://doi.org/10.1097/shk.0000000000000455CrossRefGoogle Scholar
  105. 105.
    Cernak I (2010) The importance of systemic response in the pathobiology of blast-induced neurotrauma. Front Neurol 1:151.  https://doi.org/10.3389/fneur.2010.00151PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Clemedson CJ (1956) Shock wave transmission to the central nervous system. Acta Physiol Scand 37(2–3):204–214CrossRefPubMedGoogle Scholar
  107. 107.
    Cernak I, Wang ZG, Jiang JX, Bian XW, Savic J (2001) Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J Trauma Inj Infect Crit Care 50(4):695–706.  https://doi.org/10.1097/00005373-200104000-00017CrossRefGoogle Scholar
  108. 108.
    Huber BR, Meabon JS, Hoffer ZS, Zhang J, Hoekstra JG, Pagulayan KF, McMillan PJ, Mayer CL, Banks WA, Kraemer BC, Raskind MA, McGavern DB, Peskind ER, Cook DG (2016) Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction. Neuroscience 319:206–220.  https://doi.org/10.1016/j.neuroscience.2016.01.022PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Simard JM, Pampori A, Keledjian K, Tosun C, Schwartzbauer G, Ivanova S, Gerzanich V (2014) Exposure of the thorax to a sublethal blast wave causes a hydrodynamic pulse that leads to perivenular inflammation in the brain. J Neurotrauma.  https://doi.org/10.1089/neu.2013.3016PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ling G, Bandak F, Armonda R, Grant G, Ecklund J (2009) Explosive blast neurotrauma. J Neurotrauma 26(6):815–825.  https://doi.org/10.1089/neu.2007.0484PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.STARR-C (Stress, Trauma & Resilience Research Consulting) LLCPhiladelphiaUSA

Personalised recommendations