Combining Multiphoton Excitation Microscopy with Fast Microiontophoresis to Investigate Neuronal Signaling

  • Espen HartveitEmail author
  • Margaret Lin Veruki
Part of the Neuromethods book series (NM, volume 148)


Multiphoton excitation (MPE) microscopy allows subcellular structural and functional imaging of neurons and can be combined with techniques for activating postsynaptic receptors at spatial and temporal scales that mimic normal synaptic transmission. Here, we describe procedures for combining MPE imaging of dye-filled neurons with fast microiontophoresis, by which neurotransmitter agonists can be applied from high-resistance micropipettes with subcellular resolution. With adequate compensation of the pipette capacitance, the effective time constant of the pipette is reduced, and this permits application of very brief pulses of receptor agonist (≤1 ms). The consequent high temporal and spatial resolution leads to the high specificity required for single-synapse investigations. This chapter includes detailed procedures for electrophysiological whole-cell recording, structural and functional (Ca2+) MPE imaging of dye-filled neurons, targeting a microiontophoresis pipette to a specific subcellular compartment of a dye-filled neuron under visual control, and capacitance compensation of the microiontophoresis pipette, as well as examples of experimental results that can be obtained.


Microiontophoresis Ion channels Ionotropic receptors Receptor localization Multiphoton excitation microscopy Patch-clamp electrophysiology 



This research was supported by The Research Council of Norway (NFR 182743, 189662, 214216 to EH; NFR 213776, 261914 to MLV).


  1. 1.
    Silver RA, MacAskill AF, Farrant M (2016) Neurotransmitter-gated ion channels in dendrites. In: Stuart G, Spruston N, Häusser M (eds) Dendrites, 3rd edn. Oxford University Press, New York, pp 217–257CrossRefGoogle Scholar
  2. 2.
    Kew JNC, Davies CH (eds) (2010) Ion channels. From structure to function. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Zheng J, Trudeau MC (2015) Handbook of ion channels. CRC Press, Boca RatonCrossRefGoogle Scholar
  4. 4.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76CrossRefGoogle Scholar
  5. 5.
    Higley MJ, Sabatini BL (2012) Calcium signaling in dendritic spines. Cold Spring Harb Perspect Biol 4:a005686CrossRefGoogle Scholar
  6. 6.
    Müller C, Beck H, Coulter D, Remy S (2012) Inhibitory control of linear and supralinear dendritic excitation in CA1 pyramidal neurons. Neuron 75:851–864CrossRefGoogle Scholar
  7. 7.
    Bootman MD, Berridge MJ, Putney JW, Roderick HL (eds) (2012) Calcium signaling. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  8. 8.
    Nguyen Q-T, Clay GO, Nishimura N, Schaffer CB, Schroeder LF, Tsai PS, Kleinfeld D (2008) Pioneering applications of two-photon microscopy to mammalian neurophysiology. In: Masters BR, So PTC (eds) Handbook of biomedical nonlinear optical microscopy. Oxford University Press, New York, pp 715–734Google Scholar
  9. 9.
    Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004(219):pl5PubMedGoogle Scholar
  10. 10.
    Grimes WN, Li W, Chávez AE, Diamond JS (2009) BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina. Nat Neurosci 12:585–592CrossRefGoogle Scholar
  11. 11.
    Stone TW (1985) Microiontophoresis and pressure ejection. IBRO handbook series: Methods in the neurosciences. General ed: Smith AD. Wiley, ChichesterGoogle Scholar
  12. 12.
    Lalley PM (1999) Microiontophoresis and pressure ejection. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer-Verlag, Berlin, pp 193–212CrossRefGoogle Scholar
  13. 13.
    Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409CrossRefGoogle Scholar
  14. 14.
    Murnick JG, Dubé G, Krupa B, Liu G (2002) High-resolution iontophoresis for single-synapse stimulation. J Neurosci Meth 116:65–75Google Scholar
  15. 15.
    Müller C, Remy S (2013) Fast micro-iontophoresis of glutamate and GABA: a useful tool to investigate synaptic integration. J Vis Exp (77).
  16. 16.
    Castilho Á, Ambrósio AF, Hartveit E, Veruki ML (2015) Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. J Neurosci 35:3344–3355CrossRefGoogle Scholar
  17. 17.
    Geiger JRP, Bischofberger J, Vida I, Fröbe U, Pfitzinger S, Weber HJ, Haverkampf K, Jonas P (2002) Patch-clamp recording in brain slices with improved slicer technology. Pflügers Arch 443:491–501CrossRefGoogle Scholar
  18. 18.
    Bischofberger J, Engel D, Li L, Geiger JRP, Jonas P (2006) Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Prot 1:2075–2081Google Scholar
  19. 19.
    Davie JT, Kole MHP, Letzkus JJ, Rancz EA, Spruston N, Stuart GJ, Häusser M (2006) Dendritic patch-clamp recording. Nat Prot 1:1235–1247Google Scholar
  20. 20.
    Tsai PS, Kleinfeld D (2009) In vivo two-photon laser scanning microscopy with concurrent plasma-mediated ablation: principles and hardware realization. In: Frostig RD (ed) In vivo optical imaging of brain function, 2nd edn. CRC Press, Boca Raton, pp 59–115CrossRefGoogle Scholar
  21. 21.
    Mainen ZF, Maletic-Savatic M, Shi SH, Hayashi Y, Malinow R, Svoboda K (1999) Two-photon imaging in living brain slices. Methods 18:231–239CrossRefGoogle Scholar
  22. 22.
    Dodt H-U, Frick A, Kampe K, Zieglgänsberger W (1998) NMDA and AMPA receptors on neocortical neurons are differentially distributed. Eur J Neurosci 10:3351–3357CrossRefGoogle Scholar
  23. 23.
    Bers DM, Patton CW, Nuccitelli R (2010) A practical guide to the preparation of Ca2+ buffers. In: Whitaker M (ed) Calcium in living cells. Methods in cell biology, vol 99. Wilson L, Matsudaira P (series eds). Academic Press, Burlington, pp 1–26Google Scholar
  24. 24.
    Euler T, Hausselt SE, Margolis DJ, Breuninger T, Castell X, Detwiler PB, Denk W (2009) Eyecup scope–optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflügers Arch 457:1393–1414Google Scholar
  25. 25.
    Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13CrossRefGoogle Scholar
  26. 26.
    Langer D, van ’t Hoff M, Keller AJ, Nagaraja C, Pfäffli OA, Göldi M, Kasper H, Helmchen F (2013) HelioScan: a software framework for controlling in vivo microscopy setups with high hardware flexibility, functional diversity and extendibility. J Neurosci Meth 215:38–52Google Scholar
  27. 27.
    Nguyen Q-T, Driscoll J, Dolnick EM, Kleinfeld D (2009) MPScope 2.0: a computer system for two-photon laser scanning microscopy with concurrent plasma-mediated ablation and electrophysiology. In: Frostig RD (ed) In vivo optical imaging of brain function, 2nd edn. CRC Press, Boca Raton, pp 117–142CrossRefGoogle Scholar
  28. 28.
    Brown KT, Flaming DG (1986) Advanced micropipette techniques for cell physiology. IBRO handbook series: Methods in the neurosciences. General ed: Smith AD. Wiley, ChichesterGoogle Scholar
  29. 29.
    Dutta-Moscato J (2007) Microiontophoresis as a technique to investigate spike timing dependent plasticity. MSc thesis, University of PittsburghGoogle Scholar
  30. 30.
    Nelson R, Kolb H (1985) A17: a broad-field amacrine cell in the rod system of the cat retina. J Neurophysiol 54:592–614CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiomedicineUniversity of BergenBergenNorway

Personalised recommendations