Skip to main content

Proximity Labeling of the Chlamydia trachomatis Inclusion Membrane

  • Protocol
  • First Online:
Chlamydia trachomatis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

Abstract

In the study of intracellular bacteria that reside within a membrane-bound vacuole, there are many questions related to how prokaryotic or eukaryotic transmembrane or membrane-associated proteins are organized and function within the membranes of these pathogen-containing vacuoles. Yet this host–pathogen interaction interface has proven difficult to experimentally resolve. For example, one method to begin to understand protein function is to determine the protein-binding partners; however, examining protein–protein interactions of hydrophobic transmembrane proteins is not widely successful using standard immunoprecipitation or coimmunoprecipitation techniques. In these scenarios, the lysis conditions that maintain protein–protein interactions are not compatible with solubilizing hydrophobic membrane proteins. In this chapter, we outline two proximity labeling systems to circumvent these issues to study (1) eukaryotic proteins that localize to the membrane-bound inclusion formed by Chlamydia trachomatis using BioID, and (2) chlamydial proteins that are inserted into the inclusion membrane using APEX2. BioID is a promiscuous biotin ligase to tag proximal proteins with biotin. APEX2 is an ascorbate peroxidase that creates biotin-phenoxyl radicals to label proximal proteins with biotin or 3,3′-diaminobenzidine intermediates for examination of APEX2 labeling of subcellular structures using transmission electron microscopy. We present how these methods were originally conceptualized and developed, so that the user can understand the strengths and limitations of each proximity labeling system. We discuss important considerations regarding experimental design, which include careful consideration of background conditions and statistical analysis of mass spectrometry results. When applied in the appropriate context with adequate controls, these methods can be powerful tools toward understanding membrane interfaces between intracellular pathogens and their hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science (New York, NY) 282(5389):754–759

    Article  CAS  Google Scholar 

  2. Muschiol S, Bailey L, Gylfe A, Sundin C, Hultenby K, Bergstrom S, Elofsson M, Wolf-Watz H, Normark S, Henriques-Normark B (2006) A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc Natl Acad Sci U S A 103(39):14566–14571. https://doi.org/10.1073/pnas.0606412103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bauler LD, Hackstadt T (2014) Expression and targeting of secreted proteins from Chlamydia trachomatis. J Bacteriol 196(7):1325–1334. https://doi.org/10.1128/jb.01290-13

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hackstadt T, Scidmore-Carlson MA, Shaw EI, Fischer ER (1999) The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1:119–130

    Article  CAS  PubMed  Google Scholar 

  5. Rockey DD, Grosenbach D, Hruby DE, Peacock MG, Heinzen RA, Hackstadt T (1997) Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol Microbiol 24(1):217–228

    Article  CAS  PubMed  Google Scholar 

  6. Schachter J (1999) Infection and disease epidemiology. In: Stephens RS (ed) Chlamydia: intracellular biology, pathogenesis, and immunity. American Society for Microbiology, Washington, DC, pp 139–169

    Chapter  Google Scholar 

  7. cdc.gov (2005). http://www.cdc.gov/ncidod/DBMD/diseaseinfo/chlamydiapneumonia_t.htm

  8. Datta SD, Sternberg M, Johnson RE, Berman S, Papp JR, McQuillan G, Weinstock H (2007) Gonorrhea and chlamydia in the United States among persons 14 to 39 years of age, 1999 to 2002. Ann Intern Med 147:89–97

    Article  PubMed  Google Scholar 

  9. Darville T, Hiltke TJ (2010) Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Dis 201:S114–S125

    Article  CAS  PubMed  Google Scholar 

  10. Abdelrahman YM, Belland RJ (2005) The chlamydial developmental cycle. FEMS Microbiol Rev 29(5):949–959. https://doi.org/10.1016/j.femsre.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  11. AbdelRahman Y, Ouellette SP, Belland RJ, Cox JV (2016) Polarized cell division of Chlamydia trachomatis. PLoS Pathog 12(8):e1005822. https://doi.org/10.1371/journal.ppat.1005822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belland RJ, Zhong G, Crane DD, Hogan D, Sturdevant D, Sharma J, Beatty WL, Caldwell HD (2003) Gemomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci U S A 100:8478–8483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicholson TL, Olinger L, Chong K, Schoolnik G, Stephens RS (2003) Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis. J Bacteriol 185:3179–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaw EI, Dooley CA, Fischer ER, Scidmore MA, Fields KA, Hackstadt T (2000) Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 37:913–925

    Article  CAS  PubMed  Google Scholar 

  15. Fields KA, Mead DJ, Dooley CA, Hackstadt T (2003) Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol Microbiol 48:671–683

    Article  CAS  PubMed  Google Scholar 

  16. Scidmore MA, Fischer ER, Hackstadt T (2003) Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect Immun 71:973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bannantine JP, Stamm WE, Suchland RJ, Rockey DD (1998) Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates. Infect Immun 66(12):6017–6021

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Scidmore-Carlson MA, Shaw EI, Dooley CA, Fischer ER, Hackstadt T (1999) Identification and characterization of Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins. Mol Microbiol 33:753–765

    Article  CAS  PubMed  Google Scholar 

  19. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62(2):379–433

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Betts-Hampikian HJ, Fields KA (2010) The chlamydial type III secretion mechanism: revealing cracks in a tough nut. Front Microbiol 1:114. https://doi.org/10.3389/fmicb.2010.00114

    Article  PubMed  PubMed Central  Google Scholar 

  21. Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci U S A 101(27):10166–10171. https://doi.org/10.1073/pnas.0402829101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hower S, Wolf K, Fields KA (2009) Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol Microbiol 72(6):1423–1437. https://doi.org/10.1111/j.1365-2958.2009.06732.x

    Article  CAS  PubMed  Google Scholar 

  23. Derre I, Swiss R, Agaisse H (2011) The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog 7:e1002092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lutter EI, Barger AC, Nair V, Hackstadt T (2013) Chlamydia trachomatis inclusion membrane protein CT228 recruits elements of the myosin phosphatase pathway to regulate release mechanisms. Cell Rep 3(6):1921–1931. https://doi.org/10.1016/j.celrep.2013.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scidmore MA, Hackstadt T (2001) Mammalian 14-3-3beta associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol Microbiol 39:1638–1650

    Article  CAS  PubMed  Google Scholar 

  26. Aeberhard L, Banhart S, Fischer M, Jehmlich N, Rose L, Koch S, Laue M, Renard BY, Schmidt F, Heuer D (2015) The proteome of the isolated Chlamydia trachomatis containing vacuole reveals a complex trafficking platform enriched for retromer components. PLoS Pathog 11(6):e1004883. https://doi.org/10.1371/journal.ppat.1004883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saka HA, Thompson JW, Chen Y-S, Kumar Y, Dubois LG, Moseley MA, Valdivia RH (2011) Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol 82:1185–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Delevoye C, Nilges M, Dehoux P, Paumet F, Perrinet S, Dautry-Varsat A, Subtil A (2008) SNARE protein mimicry by an intracellular bacterium. PLoS Pathog 4:e100022

    Article  Google Scholar 

  29. Elwell CA, Jiang S, Kim JH, Lee A, Wittmann T, Hanada K, Melancon P, Engel JN (2011) Chlamydia trachomatis co-opts GBF-1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog 7:e1002198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mital J, Lutter EI, Barger AC, Dooley CA, Hackstadt T (2015) Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1). Biochem Biophys Res Commun 462(2):165–170. https://doi.org/10.1016/j.bbrc.2015.04.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weber MM, Faris R (2018) Subversion of the endocytic and secretory pathways by bacterial effector proteins. Front Cell Dev Biol 6:1. https://doi.org/10.3389/fcell.2018.00001

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lane MD, Rominger KL, Young DL, Lynen F (1964) The enzymatic synthesis of holotranscarboxylase from apotranscarboxylase and (+)-biotin. II Investigation of the reaction mechanism. J Biol Chem 239:2865–2871

    CAS  PubMed  Google Scholar 

  33. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8(4):921–929. https://doi.org/10.1110/ps.8.4.921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kwon K, Beckett D (2000) Function of a conserved sequence motif in biotin holoenzyme synthetases. Protein Sci 9(8):1530–1539. https://doi.org/10.1110/ps.9.8.1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi-Rhee E, Schulman H, Cronan JE (2004) Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci 13(11):3043–3050. https://doi.org/10.1110/ps.04911804

    Article  Google Scholar 

  36. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196(6):801–810. https://doi.org/10.1083/jcb.201112098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Green NM (1963) Avidin. 1. the use of (14-C)biotin for kinetic studies and for assay. Biochem J 89:585–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Firat-Karalar EN, Rauniyar N, Yates JR 3rd, Stearns T (2014) Proximity interactions among centrosome components identify regulators of centriole duplication. Curr Biol 24(6):664–670. https://doi.org/10.1016/j.cub.2014.01.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Firat-Karalar EN, Stearns T (2015) Probing mammalian centrosome structure using BioID proximity-dependent biotinylation. Methods Cell Biol 129:153–170. https://doi.org/10.1016/bs.mcb.2015.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bareja A, Hodgkinson CP, Soderblom E, Waitt G, Dzau VJ (2018) The proximity-labeling technique BioID identifies sorting nexin 6 as a member of the insulin-like growth factor 1 (IGF1)-IGF1 receptor pathway. J Biol Chem 293(17):6449–6459. https://doi.org/10.1074/jbc.RA118.002406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mousnier A, Schroeder GN, Stoneham CA, So EC, Garnett JA, Yu L, Matthews SJ, Choudhary JS, Hartland EL, Frankel G (2014) A new method to determine in vivo interactomes reveals binding of the Legionella pneumophila effector PieE to multiple rab GTPases. MBio 5(4). https://doi.org/10.1128/mBio.01148-14

  42. Chen AL, Kim EW, Toh JY, Vashisht AA, Rashoff AQ, Van C, Huang AS, Moon AS, Bell HN, Bentolila LA, Wohlschlegel JA, Bradley PJ (2015) Novel components of the Toxoplasma inner membrane complex revealed by BioID. MBio 6(1):e02357-14. https://doi.org/10.1128/mBio.02357-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morriswood B, Havlicek K, Demmel L, Yavuz S, Sealey-Cardona M, Vidilaseris K, Anrather D, Kostan J, Djinovic-Carugo K, Roux KJ, Warren G (2013) Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot Cell 12(2):356–367. https://doi.org/10.1128/ec.00326-12

    Article  PubMed  Google Scholar 

  44. Schnider CB, Bausch-Fluck D, Bruhlmann F, Heussler VT, Burda PC (2018) BioID reveals novel proteins of the Plasmodium parasitophorous vacuole membrane. mSphere 3(1). https://doi.org/10.1128/mSphere.00522-17

  45. Schopp IM, Bethune J (2018) Split-BioID—Proteomic analysis of context-specific protein complexes in their native cellular environment. J Vis Exp (134). https://doi.org/10.3791/57479

  46. Chojnowski A, Sobota RM, Ong PF, Xie W, Wong X, Dreesen O, Burke B, Stewart CL (2018) 2C-BioID: an advanced two component BioID system for precision mapping of protein interactomes. iScience 10:40–52. https://doi.org/10.1016/j.isci.2018.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK, Ting AY (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12(1):51–54. https://doi.org/10.1038/nmeth.3179

    Article  CAS  PubMed  Google Scholar 

  48. Connolly CN, Futter CE, Gibson A, Hopkins CR, Cutler DF (1994) Transport into and out of the Golgi complex studied by transfecting cells with cDNAs encoding horseradish peroxidase. J Cell Biol 127(3):641–652

    Article  CAS  PubMed  Google Scholar 

  49. Li J, Wang Y, Chiu SL, Cline HT (2010) Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies. Front Neural Circuits 4:6. https://doi.org/10.3389/neuro.04.006.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hopkins C, Gibson A, Stinchcombe J, Futter C (2000) Chimeric molecules employing horseradish peroxidase as reporter enzyme for protein localization in the electron microscope. Methods Enzymol 327:35–45

    Article  CAS  PubMed  Google Scholar 

  51. Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30(11):1143–1148. https://doi.org/10.1038/nbt.2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science (New York, NY) 339(6125):1328–1331. https://doi.org/10.1126/science.1230593

    Article  CAS  Google Scholar 

  53. Mandelman D, Schwarz FP, Li H, Poulos TL (1998) The role of quaternary interactions on the stability and activity of ascorbate peroxidase. Protein Sci 7(10):2089–2098. https://doi.org/10.1002/pro.5560071005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khan AA, Quigley JG (2011) Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim Biophys Acta 1813(5):668–682. https://doi.org/10.1016/j.bbamcr.2011.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee S-Y, Kang M-G, Park J-S, Lee G, Ting Alice Y, Rhee H-W (2016) APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep 15(8):1837–1847. https://doi.org/10.1016/j.celrep.2016.04.064

    Article  CAS  PubMed  Google Scholar 

  56. Lobingier BT, Huttenhain R, Eichel K, Miller KB, Ting AY, von Zastrow M, Krogan NJ (2017) An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169(2):350–360.e12. https://doi.org/10.1016/j.cell.2017.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Santin YG, Doan T, Lebrun R, Espinosa L, Journet L, Cascales E (2018) In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol 3(11):1304–1313. https://doi.org/10.1038/s41564-018-0234-3

    Article  CAS  PubMed  Google Scholar 

  58. Kabeiseman EJ, Cichos KH, Moore ER (2014) The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion. Front Cell Infect Microbiol 4:129. https://doi.org/10.3389/fcimb.2014.00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Watson RT, Pessin JE (2000) Functional cooperation of two independent targeting domains in syntaxin 6 is required for its efficient localization in the trans-golgi network of 3T3L1 adipocytes. J Biol Chem 275:1261–1268

    Article  CAS  PubMed  Google Scholar 

  60. Mojica SA, Hovis KM, Frieman MB, Tran B, Hsia RC, Ravel J, Jenkins-Houk C, Wilson KL, Bavoil PM (2015) SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors. Mol Biol Cell 26(10):1918–1934. https://doi.org/10.1091/mbc.E14-11-1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McKuen MJ, Mueller KE, Bae YS, Fields KA (2017) Fluorescence-reported allelic exchange mutagenesis reveals a role for Chlamydia trachomatis TmeA in invasion that is independent of host AHNAK. Infect Immun 85(12). https://doi.org/10.1128/iai.00640-17

  62. Fields KA, McCormack R, de Armas LR, Podack ER (2013) Perforin-2 restricts growth of Chlamydia trachomatis in macrophages. Infect Immun 81(8):3045–3054. https://doi.org/10.1128/iai.00497-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moore ER, Ouellette SP (2014) Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins. Front Cell Infect Microbiol 4:157. https://doi.org/10.3389/fcimb.2014.00157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rucks EA, Olson MG, Jorgenson LM, Srinivasan RR, Ouellette SP (2017) Development of a proximity labeling system to map the Chlamydia trachomatis inclusion membrane. Front Cell Infect Microbiol 7:40. https://doi.org/10.3389/fcimb.2017.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Papageorgiou DN, Demmers J, Strouboulis J (2013) NP-40 reduces contamination by endogenous biotinylated carboxylases during purification of biotin tagged nuclear proteins. Protein Expr Purif 89(1):80–83. https://doi.org/10.1016/j.pep.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  66. Hollinshead M, Sanderson J, Vaux DJ (1997) Anti-biotin antibodies offer superior organelle-specific labeling of mitochondria over avidin or streptavidin. J Histochem Cytochem 45(8):1053–1057. https://doi.org/10.1177/002215549704500803

    Article  CAS  PubMed  Google Scholar 

  67. Rodriguez P, Braun H, Kolodziej KE, de Boer E, Campbell J, Bonte E, Grosveld F, Philipsen S, Strouboulis J (2006) Isolation of transcription factor complexes by in vivo biotinylation tagging and direct binding to streptavidin beads. In: Bina M (ed) Gene mapping, discovery, and expression: methods and protocols. Humana Press, Totowa, NJ, pp 305–323. https://doi.org/10.1385/1-59745-097-9:305

    Chapter  Google Scholar 

  68. de Boer E, Rodriguez P, Bonte E, Krijgsveld J, Katsantoni E, Heck A, Grosveld F, Strouboulis J (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100(13):7480–7485. https://doi.org/10.1073/pnas.1332608100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi H, Larsen B, Lin ZY, Breitkreutz A, Mellacheruvu D, Fermin D, Qin ZS, Tyers M, Gingras AC, Nesvizhskii AI (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8(1):70–73. https://doi.org/10.1038/nmeth.1541

    Article  CAS  PubMed  Google Scholar 

  70. Webb-Robertson BJ, Matzke MM, Datta S, Payne SH, Kang J, Bramer LM, Nicora CD, Shukla AK, Metz TO, Rodland KD, Smith RD, Tardiff MF, McDermott JE, Pounds JG, Waters KM (2014) Bayesian proteoform modeling improves protein quantification of global proteomic measurements. Mol Cell Proteomics 13(12):3639–3646. https://doi.org/10.1074/mcp.M113.030932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martell JD, Deerinck TJ, Lam SS, Ellisman MH, Ting AY (2017) Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nat Protoc 12(9):1792–1816. https://doi.org/10.1038/nprot.2017.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wickstrum J, Sammons LR, Restivo KN, Hefty PS (2013) Conditional gene expression in using the tet system. PLoS One 8(10):e76743. https://doi.org/10.1371/journal.pone.0076743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN (2011) Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog 7(9):e1002258. https://doi.org/10.1371/journal.ppat.1002258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mueller KE, Fields KA (2015) Application of beta-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. PLoS One 10(8):e0135295. https://doi.org/10.1371/journal.pone.0135295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Willingham MC (1999) Fluorescence labeling of surface antigens of attached or suspended tissue-culture cells. In: Javois LC (ed) Immunocytochemical methods and protocols. Humana Press, Totowa, NJ, pp 113–119. https://doi.org/10.1385/1-59259-213-9:113

    Chapter  Google Scholar 

  76. Lucas AL, Ouellette SP, Kabeiseman EJ, Cichos KH, Rucks EA (2015) The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis. Front Cell Infect Microbiol 5:68. https://doi.org/10.3389/fcimb.2015.00068

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chen AL, Johnson KA, Lee JK, Sutterlin C, Tan M (2012) CPAF: a chlamydial protease in search of an authentic substrate. PLoS Pathog 8(8):e1002842. https://doi.org/10.1371/journal.ppat.1002842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kurien BT, Hal Scofield R (2015) Western blotting: methods and protocols, Methods in molecular biology, vol 1312. Humana Press, New York. https://doi.org/10.1007/978-1-4939-2694-7

    Book  Google Scholar 

  79. Kokes M, Valdivia RH (2015) Differential translocation of host cellular materials into the Chlamydia trachomatis inclusion lumen during chemical fixation. PLoS One 10(10):e0139153. https://doi.org/10.1371/journal.pone.0139153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Scot Ouellette for critical reading of the manuscript. We would also like to thank Tom Bargar and Nicholas Conoan of the Electron Microscopy Core Facility (EMCF) at the University of Nebraska Medical Center for technical assistance. The EMCF is supported by state funds from the Nebraska Research Initiative (NRI) and the University of Nebraska Foundation, and institutionally by the Office of the Vice Chancellor for Research. This work is supported by NIH/NIAID R01 AI114670 (E. Rucks) and UNMC Department of Pathology and Microbiology start-up funds (E. Rucks).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Rucks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Olson, M.G., Jorgenson, L.M., Widner, R.E., Rucks, E.A. (2019). Proximity Labeling of the Chlamydia trachomatis Inclusion Membrane. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics