Advertisement

Filopodia Quantification Using FiloQuant

  • Guillaume JacquemetEmail author
  • Hellyeh Hamidi
  • Johanna Ivaska
Protocol
  • 589 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2040)

Abstract

Filopodia are fingerlike membrane protrusions that are extended by cells in vitro and in vivo. Due to important roles in sensing the extracellular microenvironment, filopodia and filopodia-like protrusions have been implicated in numerous biological processes including epithelial sheet zippering in development and wound healing and in cancer progression. Recently, there has been an explosion in the number of software available to analyze specific features of cell protrusions with the aim of gaining mechanistic insights into the action of filopodia and filopodia-like structures. In this methods chapter, we highlight an open-access software called FiloQuant that has been developed to specifically quantify the length, density, and dynamics of filopodia and filopodia-like structures from in vitro and in vivo generated samples. We provide step-by-step protocols on (i) how to install FiloQuant in the ImageJ platform (Fiji), (ii) how to quantify filopodia and filopodia-like protrusions from single images using FiloQuant, and (iii) how to track filopodial protrusions from live-cell imaging experiments using FiloQuant and TrackMate.

Key words

Filopodia Filopodia-like protrusions FiloQuant ImageJ Fiji Filopodia properties 

Supplementary material

454918_1_En_16_MOESM1_ESM.zip (27 mb)
Electronic Supplementary File 1: (ZIP 4096 kb)

References

  1. 1.
    Arjonen A, Kaukonen R, Ivaska J (2011) Filopodia and adhesion in cancer cell motility. Cell Adhes Migr 5:421–430CrossRefGoogle Scholar
  2. 2.
    Biswas KH, Zaidel-Bar R (2017) Early events in the assembly of E-cadherin adhesions. Exp Cell Res 358:14–19CrossRefGoogle Scholar
  3. 3.
    Jacquemet G, Hamidi H, Ivaska J (2015) Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol 36:23–31CrossRefGoogle Scholar
  4. 4.
    Jacquemet G, Green DM, Bridgewater RE et al (2013) RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex. J Cell Biol 202:917–935CrossRefGoogle Scholar
  5. 5.
    Paul NR, Allen JL, Chapman A et al (2015) α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J Cell Biol 210:1013–1031CrossRefGoogle Scholar
  6. 6.
    Jacquemet G, Paatero I, Carisey AF et al (2017) FiloQuant reveals increased filopodia density during breast cancer progression. J Cell Biol 216:3387–3403.  https://doi.org/10.1083/jcb.201704045CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wood W, Jacinto A, Grose R et al (2002) Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4:907–912CrossRefGoogle Scholar
  8. 8.
    Sato Y, Nagatoshi K, Hamano A et al (2017) Basal filopodia and vascular mechanical stress organize fibronectin into pillars bridging the mesoderm-endoderm gap. Development 144:281–291CrossRefGoogle Scholar
  9. 9.
    Heusermann W, Hean J, Trojer D et al (2016) Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol 213:173–184CrossRefGoogle Scholar
  10. 10.
    Nilufar S, Morrow AA, Lee JM et al (2013) FiloDetect: automatic detection of filopodia from fluorescence microscopy images. BMC Syst Biol 7:66CrossRefGoogle Scholar
  11. 11.
    Tsygankov D, Bilancia CG, Vitriol EA et al (2014) CellGeo: a computational platform for the analysis of shape changes in cells with complex geometries. J Cell Biol 204:443–460CrossRefGoogle Scholar
  12. 12.
    Barry DJ, Durkin CH, Abella JV et al (2015) Open source software for quantification of cell migration, protrusions, and fluorescence intensities. J Cell Biol 209:163–180CrossRefGoogle Scholar
  13. 13.
    Urbančič V, Butler R, Richier B et al (2017) Filopodyan: an open-source pipeline for the analysis of filopodia. J Cell Biol 216:3405–3422.  https://doi.org/10.1083/jcb.201705113CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefGoogle Scholar
  15. 15.
    Tinevez J-Y, Perry N, Schindelin J et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods (San Diego, Calif) 115:80–90CrossRefGoogle Scholar
  16. 16.
    Enhance Local Contrast (CLAHE)—ImageJ. https://imagej.net/Enhance_Local_Contrast_(CLAHE)
  17. 17.
    Arganda-Carreras I, Fernández-González R, Muñoz-Barrutia A et al (2010) 3D reconstruction of histological sections: application to mammary gland tissue. Microsc Res Tech 73:1019–1029CrossRefGoogle Scholar
  18. 18.
    Rueden CT, Schindelin J, Hiner MC et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529CrossRefGoogle Scholar
  19. 19.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  20. 20.
    Fiji is just ImageJ. https://fiji.sc/
  21. 21.
  22. 22.
    Gustafsson N, Culley S, Ashdown G et al (2016) Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7:12471CrossRefGoogle Scholar
  23. 23.
  24. 24.
  25. 25.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Guillaume Jacquemet
    • 1
    • 2
    Email author
  • Hellyeh Hamidi
    • 1
  • Johanna Ivaska
    • 1
  1. 1.Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
  2. 2.Faculty of Science and Engineering, Cell BiologyÅbo Akademi UniversityTurkuFinland

Personalised recommendations