Advertisement

Attachment of Peptides to Oligonucleotides on Solid Support Using Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition

  • Malgorzata HoncharenkoEmail author
  • Dmytro Honcharenko
  • Roger StrömbergEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2036)

Abstract

In vivo bioavailability and delivery of nucleic acids to the site of action is a severe limitation in oligonucleotide (ON) therapeutics. Equipping the ONs with cell penetrating, homing or endosomal escape peptides can enhance specificity and/or uptake efficiencies. We describe here a general procedure for the preparation of peptide–oligonucleotide conjugates (POCs) on solid support utilizing a novel activated alkyne containing linker which enhances the Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition. Conjugation reaction is efficient in millimolar concentration and submicromolar amounts at ambient temperature. The route for POC preparation involves two subsequent conjugation steps: to solid-supported ONs containing a 5′-amino modifier (1) the triple bond donor (p-(N-propynoylamino)toluic acid (PATA), p-([2-(propynyloxy)acetamido]methyl)benzoic acid (PAMBA) or 2-(propynyloxy)acetic acid (PAA)) is first coupled and then (2) an azido-functionalized peptide is attached via a triazole linkage by copper(I) catalyzed Huisgen 1,3-dipolar cycloaddition. The fragment-conjugated POC is released from the solid support by concentrated ammonia. The method gives high conversion of ON to the POC and only involves a single purification step after complete assembly and release from the solid support. The synthesis is flexible and designed to utilize commercially available oligonucleotide and peptide derivatives without the need for specific automated synthesizers.

Key words

Peptide–oligonucleotide conjugates Huisgen 1,3-dipolar cycloaddition Click chemistry Solid-phase synthesis Conjugation Activated triple bond donor Azido-containing peptides 

References

  1. 1.
    Akhtar S, Hughes MD, Khan A et al (2000) The delivery of antisense therapeutics. Adv Drug Deliv Rev 44:3–21CrossRefGoogle Scholar
  2. 2.
    Lundin P, Johansson H, Guterstam P et al (2008) Distinct uptake routes of cell-penetrating peptide conjugates. Bioconjug Chem 19:2535–2542CrossRefGoogle Scholar
  3. 3.
    Lebleu B, Moulton HM, Abes R et al (2008) Cell penetrating peptide conjugates of steric block oligonucleotides. Adv Drug Deliv Rev 60:517–529CrossRefGoogle Scholar
  4. 4.
    Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206CrossRefGoogle Scholar
  5. 5.
    Borrelli A, Tornesello AL, Tornesello ML et al (2018) Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules 23:295CrossRefGoogle Scholar
  6. 6.
    Jirka SMG, 'tHoen PAC, Diaz Parillas V et al (2018) Cyclic peptides to improve delivery and exon skipping of antisense oligonucleotides in a mouse model for Duchenne muscular dystrophy. Mol Ther 26:132–147CrossRefGoogle Scholar
  7. 7.
    Jirka SMG, Heemskerk H, Tanganyika-de Winter CL et al (2014) Peptide conjugation of 2'-O-methyl phosphorothioate antisense oligonucleotides enhances cardiac uptake and exon skipping in mdx mice. Nucleic Acid Ther 24:25–36CrossRefGoogle Scholar
  8. 8.
    Astakhova K, Ray R, Taskova M et al (2018) “Clicking” gene therapeutics: a successful union of chemistry and biomedicine for new solutions. Mol Pharm 15:2892–2899CrossRefGoogle Scholar
  9. 9.
    El-Sagheer AH, Brown T (2012) Click chemistry - a versatile method for nucleic acid labelling, cyclisation and ligation. In: Fox KR, Brown T (eds) DNA conjugates and sensors. RSC Biomolecular SciencesGoogle Scholar
  10. 10.
    Jezowska-Herrera M, Honcharenko D, Ghidini A et al (2016) Enabling multiple conjugation to oligonucleotides using “click cycles”. Bioconjug Chem 27:2620–2628CrossRefGoogle Scholar
  11. 11.
    Honcharenko M, Bestas B, Jezowska M et al (2016) Synthetic m3G-CAP attachment necessitates a minimum trinucleotide constituent to be recognised as a nuclear import signal. RSC Adv 6:51367–51373CrossRefGoogle Scholar
  12. 12.
    Wenska M, Alvira M, Steunenberg P et al (2011) An activated triple bond linker enables "click" attachment of peptides to oligonucleotides on solid support. Nucleic Acids Res 39:9047–9059CrossRefGoogle Scholar
  13. 13.
    Honcharenko M, Romanowska J, Alvira M et al (2012) Capping of oligonucleotides with “clickable” m3G-CAPs. RSC Adv 2:12949–12962CrossRefGoogle Scholar
  14. 14.
    Jezowska M, Romanowska J, Bestas B et al (2012) Synthesis of biotin linkers with the activated triple bond donor [p-(N-propynoylamino)toluic acid] (PATA) for efficient biotinylation of peptides and oligonucleotides. Molecules 17:14174–14185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden

Personalised recommendations