Designing siRNA and Evaluating Its Effect on RNA Targets Using qPCR and Western Blot

  • Linda Vidarsdottir
  • Oksana Goroshchuk
  • Iryna Kolosenko
  • Caroline Palm-ApergiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2036)


The discovery of the RNA interference (RNAi) pathway followed by the usage of synthetic short-interfering RNAs (siRNA) has contributed greatly to the understanding of gene function. Carefully designed siRNAs can considerably improve siRNA specificity leading to more accurate and efficient gene silencing. Evaluation of gene knockdown is vital for optimization of siRNA efficacy. Here we describe the fundamental principles of siRNA design and strategies for evaluating gene knockdown.

Key words

Gene silencing RNA interference Short-interfering RNA qPCR Western blot 



This study was supported by the Swedish Foundation for Strategic Research (C.P.A.) and the Swedish Childhood Cancer Foundation (C.P.A.).


  1. 1.
    Tuschl T (2001) RNA interference and small interfering RNAs. Chembiochem. 20(3):408-414doi:<239::AID-CBIC239>3.0.CO;2-R (pii)
  2. 2.
    Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. Scholar
  3. 3.
    Johnsson P, Ackley A, Vidarsdottir L et al (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20(4):440–446. Scholar
  4. 4.
    Martinez J, Patkaniowska A, Urlaub H et al (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574. Scholar
  5. 5.
    Ui-Tei K, Naito Y, Nishi K et al (2008) Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res 36(22):7100–7109. Scholar
  6. 6.
    Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441. Scholar
  7. 7.
    Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26(2):199–213. Scholar
  8. 8.
    Holen T, Amarzguioui M, Wiiger MT et al (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 30(8):1757–1766. Scholar
  9. 9.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216. Scholar
  10. 10.
    Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21(6):635–637. Scholar
  11. 11.
    Tafer H, Ameres SL, Obernosterer G et al (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26(83):578. Scholar
  12. 12.
    Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130(1):101–112. Scholar
  13. 13.
    Fakhr E, Zare F, Teimoori-Toolabi L (2016) Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 23(4):73–82CrossRefGoogle Scholar
  14. 14.
    Naito Y, Yoshimura J, Morishita S, Ui-Tei K (2009) SiDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 10:392. Scholar
  15. 15.
    Elbashir SM, Martinez J, Patkaniowska A et al (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20(23):6877–6888. Scholar
  16. 16.
    Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22(3):326–330. Scholar
  17. 17.
    Fedorov Y, Anderson EM, Birmingham A et al (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12(7):1188–1196. Scholar
  18. 18.
    Hornung V, Guenthner-Biller M, Bourquin C et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11(3):263–270. Scholar
  19. 19.
    Judge AD, Sood V, Shaw JR et al (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23(4):457–462. Scholar
  20. 20.
    Sharan RN, Vaiphei ST, Nongrum S et al (2015) Consensus reference gene(s) for gene expression studies in human cancers: end of the tunnel visible? Cell Oncol 38(6):419–431CrossRefGoogle Scholar
  21. 21.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. Scholar
  22. 22.
    Meade BR, Gogoi K, Hamil AS et al (2014) Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat Biotechnol 32(12):1256–1261. Scholar
  23. 23.
    Hagopian JC, Hamil AS, van den Berg A et al (2017) Induction of RNAi responses by short left-handed hairpin RNAi triggers. Nucleic Acid Ther 27(5):260–271. Scholar
  24. 24.
    Kim DH, Behlke MA, Rose SD et al (2005) Synthetic dsRNA dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23(2):222–226. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Linda Vidarsdottir
    • 1
  • Oksana Goroshchuk
    • 1
  • Iryna Kolosenko
    • 1
  • Caroline Palm-Apergi
    • 1
    Email author
  1. 1.Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetHuddingeSweden

Personalised recommendations