Advertisement

ADME: Assessing Pharmacokinetic–Pharmacodynamic Parameters of Oligonucleotides

  • Rasmus Jansson-LöfmarkEmail author
  • Christine Ahlström
  • Peter Gennemark
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2036)

Abstract

We describe tactics to assess pharmacokinetic (PK) and pharmacodynamic (PD) parameters of oligonucleotides. The chapter includes recommendations on the design of single-dose preclinical PK studies, preclinical PKPD studies, and toxicological studies, and on best practice for scaling PK and PD parameters from animal to human. We focus on single-stranded oligonucleotides, but relevant differences to double-stranded RNAs are also addressed.

Key words

Pharmacokinetics Pharmacodynamics Oligonucleotides Translation Human dose prediction 

References

  1. 1.
    Andersson S, Antonsson M, Elebring M, Jansson-Lofmark R, Weidolf L (2018) Drug metabolism and pharmacokinetic strategies for oligonucleotide- and mRNA-based drug development. Drug Discov Today 23:1733.  https://doi.org/10.1016/j.drudis.2018.05.030CrossRefPubMedGoogle Scholar
  2. 2.
    Crooke ST, Witztum JL, Bennett CF, Baker BF (2018) RNA-targeted therapeutics. Cell Metab 27(4):714–739.  https://doi.org/10.1016/j.cmet.2018.03.004CrossRefPubMedGoogle Scholar
  3. 3.
    Valeur E, Gueret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT (2017) New modalities for challenging targets in drug discovery. Angew Chem Int Ed Engl 56(35):10294–10323.  https://doi.org/10.1002/anie.201611914CrossRefPubMedGoogle Scholar
  4. 4.
    Durham TB, Blanco MJ (2015) Target engagement in lead generation. Bioorg Med Chem Lett 25(5):998–1008.  https://doi.org/10.1016/j.bmcl.2014.12.076CrossRefPubMedGoogle Scholar
  5. 5.
    Morgan P, Brown DG, Lennard S, Anderton MJ, Barrett JC, Eriksson U, Fidock M, Hamren B, Johnson A, March RE, Matcham J, Mettetal J, Nicholls DJ, Platz S, Rees S, Snowden MA, Pangalos MN (2018) Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov 17(3):167–181.  https://doi.org/10.1038/nrd.2017.244CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Visser SA, Aurell M, Jones RD, Schuck VJ, Egnell AC, Peters SA, Brynne L, Yates JW, Jansson-Lofmark R, Tan B, Cooke M, Barry ST, Hughes A, Bredberg U (2013) Model-based drug discovery: implementation and impact. Drug Discov Today 18(15-16):764–775.  https://doi.org/10.1016/j.drudis.2013.05.012CrossRefPubMedGoogle Scholar
  7. 7.
    Jansson-Lofmark R, Gennemark P (2018) Inferring half-lives at the effect site of oligonucleotide drugs. Nucleic Acid Ther 28:319–325.  https://doi.org/10.1089/nat.2018.0739CrossRefPubMedGoogle Scholar
  8. 8.
    Tillman LG, Geary RS, Hardee GE (2008) Oral delivery of antisense oligonucleotides in man. J Pharm Sci 97(1):225–236.  https://doi.org/10.1002/jps.21084CrossRefPubMedGoogle Scholar
  9. 9.
    Larson SD, Jackson LN, Chen LA, Rychahou PG, Evers BM (2007) Effectiveness of siRNA uptake in target tissues by various delivery methods. Surgery 142(2):262–269.  https://doi.org/10.1016/j.surg.2007.03.011CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liang F, Lindgren G, Lin A, Thompson EA, Ols S, Rohss J, John S, Hassett K, Yuzhakov O, Bahl K, Brito LA, Salter H, Ciaramella G, Lore K (2017) Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol Ther 25(12):2635–2647.  https://doi.org/10.1016/j.ymthe.2017.08.006CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M, Sonenberg N (2017) N1-methyl-pseudouridine in mRNA enhances translation through eIF2alpha-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res 45(10):6023–6036.  https://doi.org/10.1093/nar/gkx135CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Crooke ST (ed) (2001) Antisense drug technology: principles, strategies, and applications, 2nd edn. Marcel Dekker, New York, 948pGoogle Scholar
  13. 13.
    Watanabe TA, Geary RS, Levin AA (2006) Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302). Oligonucleotides 16(2):169–180.  https://doi.org/10.1089/oli.2006.16.169CrossRefGoogle Scholar
  14. 14.
    Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51.  https://doi.org/10.1016/j.addr.2015.01.008CrossRefGoogle Scholar
  15. 15.
    Geary RS, Baker BF, Crooke ST (2015) Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (kynamro((R))): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin Pharmacokinet 54(2):133–146.  https://doi.org/10.1007/s40262-014-0224-4CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Baek MS, Yu RZ, Gaus H, Grundy JS, Geary RS (2010) In vitro metabolic stabilities and metabolism of 2′-O-(methoxyethyl) partially modified phosphorothioate antisense oligonucleotides in preincubated rat or human whole liver homogenates. Oligonucleotides 20(6):309–316.  https://doi.org/10.1089/oli.2010.0252CrossRefPubMedGoogle Scholar
  17. 17.
    Kazmi F, Yerino P, McCoy C, Parkinson A, Buckley DB, Ogilvie BW (2018) An assessment of the in vitro inhibition of cytochrome P450 enzymes, UDP-glucuronosyltransferases, and transporters by phosphodiester- or phosphorothioate-linked oligonucleotides. Drug Metab Dispos 46(8):1066–1074.  https://doi.org/10.1124/dmd.118.081729CrossRefPubMedGoogle Scholar
  18. 18.
    Zou Y, Tiller P, Chen IW, Beverly M, Hochman J (2008) Metabolite identification of small interfering RNA duplex by high-resolution accurate mass spectrometry. Rapid Commun Mass Spectrom 22(12):1871–1881.  https://doi.org/10.1002/rcm.3561CrossRefPubMedGoogle Scholar
  19. 19.
    Wang L, Ji C (2016) Advances in quantitative bioanalysis of oligonucleotide biomarkers and therapeutics. Bioanalysis 8(2):143–155.  https://doi.org/10.4155/bio.15.234CrossRefPubMedGoogle Scholar
  20. 20.
    Hung G, Xiao X, Peralta R, Bhattacharjee G, Murray S, Norris D, Guo S, Monia BP (2013) Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals. Nucleic Acid Ther 23(6):369–378.  https://doi.org/10.1089/nat.2013.0443CrossRefPubMedGoogle Scholar
  21. 21.
    Nair JK, Attarwala H, Sehgal A, Wang Q, Aluri K, Zhang X, Gao M, Liu J, Indrakanti R, Schofield S, Kretschmer P, Brown CR, Gupta S, Willoughby JLS, Boshar JA, Jadhav V, Charisse K, Zimmermann T, Fitzgerald K, Manoharan M, Rajeev KG, Akinc A, Hutabarat R, Maier MA (2017) Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res 45(19):10969–10977.  https://doi.org/10.1093/nar/gkx818CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gupta A (2015) Drug metabolism and pharmacokinetic (DMPK) properties of siRNA-GalNAc conjugates. DIA/FDA oligonucleotide based therapeutic conference, September 09–11, 2015. http://www.alnylam.com/web/assets/DIA_DMPK_09092015.pdf. Accessed 08 Aug 2018
  23. 23.
    Yu RZ, Kim TW, Hong A, Watanabe TA, Gaus HJ, Geary RS (2007) Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab Dispos 35(3):460–468.  https://doi.org/10.1124/dmd.106.012401CrossRefGoogle Scholar
  24. 24.
    Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  25. 25.
    Graham MJ, Crooke ST, Monteith DK, Cooper SR, Lemonidis KM, Stecker KK, Martin MJ, Crooke RM (1998) In vivo distribution and metabolism of a phosphorothioate oligonucleotide within rat liver after intravenous administration. J Pharmacol Exp Ther 286(1):447–458PubMedGoogle Scholar
  26. 26.
    Donner AJ, Wancewicz EV, Murray HM, Greenlee S, Post N, Bell M, Lima WF, Swayze EE, Seth PP (2017) Co-administration of an excipient oligonucleotide helps delineate pathways of productive and nonproductive uptake of phosphorothioate antisense oligonucleotides in the liver. Nucleic Acid Ther 27(4):209–220.  https://doi.org/10.1089/nat.2017.0662CrossRefPubMedGoogle Scholar
  27. 27.
    Yu RZ, Graham MJ, Post N, Riney S, Zanardi T, Hall S, Burkey J, Shemesh CS, Prakash TP, Seth PP, Swayze EE, Geary RS, Wang Y, Henry S (2016) Disposition and pharmacology of a GalNAc3-conjugated ASO targeting human lipoprotein (a) in mice. Mol Ther Nucleic Acids 5:e317.  https://doi.org/10.1038/mtna.2016.26CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Callies S, Andre V, Patel B, Waters D, Francis P, Burgess M, Lahn M (2011) Integrated analysis of preclinical data to support the design of the first in man study of LY2181308, a second generation antisense oligonucleotide. Br J Clin Pharmacol 71(3):416–428.  https://doi.org/10.1111/j.1365-2125.2010.03836.xCrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5(4):381–391.  https://doi.org/10.1517/17425250902877680CrossRefGoogle Scholar
  30. 30.
    Park J, Park J, Pei Y, Xu J, Yeo Y (2016) Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 104:93–109.  https://doi.org/10.1016/j.addr.2015.12.004CrossRefPubMedGoogle Scholar
  31. 31.
    Steven Neben KL, Jia Tay, Nelson Chau, Yoshio Morikawa, Balkrishnan Bhat, Neil Gibson (2015) RG-101, A novel GalNac-conjugate inhibitor of microRNA-122, demonstrates significant viral load reduction and reduces liver steatosis in human hepatocyte chimeric mice infected with genotype 1A or hard-to-treat genotype 3A hepatitis C virus (HCV). EASL 50th congress of hepatology. http://ir.regulusrx.com/static-files/bebec48e-c06f-4289-bf25-723ba3f856af. Accessed 13 Aug 2018.CrossRefGoogle Scholar
  32. 32.
    Graham MJ, Lee RG, Bell TA 3rd, Fu W, Mullick AE, Alexander VJ, Singleton W, Viney N, Geary R, Su J, Baker BF, Burkey J, Crooke ST, Crooke RM (2013) Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res 112(11):1479–1490.  https://doi.org/10.1161/CIRCRESAHA.111.300367CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yu RZ, Gunawan R, Post N, Zanardi T, Hall S, Burkey J, Kim TW, Graham MJ, Prakash TP, Seth PP, Swayze EE, Geary RS, Henry SP, Wang Y (2016) Disposition and pharmacokinetics of a GalNAc3-conjugated antisense oligonucleotide targeting human lipoprotein (a) in monkeys. Nucleic Acid Ther 26(6):372–380.  https://doi.org/10.1089/nat.2016.0623CrossRefPubMedGoogle Scholar
  34. 34.
    Yu RZ, Grundy JS, Henry SP, Kim TW, Norris DA, Burkey J, Wang Y, Vick A, Geary RS (2015) Predictive dose-based estimation of systemic exposure multiples in mouse and monkey relative to human for antisense oligonucleotides with 2′-o-(2-methoxyethyl) modifications. Mol Ther Nucleic Acids 4:e218.  https://doi.org/10.1038/mtna.2014.69CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gabrielsson J, Weiner D (2012) Non-compartmental analysis. Methods Mol Biol 929:377–389.  https://doi.org/10.1007/978-1-62703-050-2_16CrossRefPubMedGoogle Scholar
  36. 36.
    Yu RZ, Lemonidis KM, Graham MJ, Matson JE, Crooke RM, Tribble DL, Wedel MK, Levin AA, Geary RS (2009) Cross-species comparison of in vivo PK/PD relationships for second-generation antisense oligonucleotides targeting apolipoprotein B-100. Biochem Pharmacol 77(5):910–919.  https://doi.org/10.1016/j.bcp.2008.11.005CrossRefPubMedGoogle Scholar
  37. 37.
    Geary RS, Yu RZ, Watanabe T, Henry SP, Hardee GE, Chappell A, Matson J, Sasmor H, Cummins L, Levin AA (2003) Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2′-O-(2-methoxyethyl) modified antisense oligonucleotide: comparison across species. Drug Metab Dispos 31(11):1419–1428.  https://doi.org/10.1124/dmd.31.11.1419CrossRefPubMedGoogle Scholar
  38. 38.
    Rosie Z, Yu PK and PD (2014) Properties of antisense oligonucleotides: bridging nonclinical to clinical. AAPS NBC 19–21 May 2014, San Diego, California https://cms.psav.com/efb7b65/public/download_uploaded_media/pdf/64

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rasmus Jansson-Löfmark
    • 1
    Email author
  • Christine Ahlström
    • 1
  • Peter Gennemark
    • 1
  1. 1.DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&DAstraZenecaGothenburgSweden

Personalised recommendations