Advertisement

Using Molecular Dynamics Free Energy Simulation to Compute Binding Affinities of DNA G-Quadruplex Ligands

  • Nanjie Deng
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2035)

Abstract

We provide a practical guide for using molecular dynamics simulation to compute the binding affinity of small molecules in complex with G-quadruplex DNA. Such calculations have a number of applications, such as rescoring docking results and validating docked poses, to inform the discovery of G-quadruplex binders with high affinity and selectivity. This chapter describes two binding free energy protocols: the double decoupling method (DDM) and the potential of mean force method (PMF). We illustrate the application of the two methods using a recent case study of the binding of quindoline with the c-MYC G-quadruplex DNA. For this system, the two methods yield absolute binding free energies within ~2 kcal/mol of the experimental value. We discuss the advantages and disadvantages of these binding free energy methods.

Key words

Molecular dynamics simulation Absolute binding free energy Double decoupling method Potential of mean force c-MYC G-quadruplex Quindoline 

Notes

Acknowledgments

The author thanks Dr. Danzhou Yang, Dr. Piotr Cieplak, and Dr. Lauren Wickstrom for helpful discussions.

References

  1. 1.
    Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci 99(18):11593–11598.  https://doi.org/10.1073/pnas.182256799CrossRefPubMedGoogle Scholar
  2. 2.
    Yang D, Okamoto K (2010) Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med Chem 2(4):619–646.  https://doi.org/10.4155/fmc.09.172CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Neidle S (2016) Quadruplex nucleic acids as novel therapeutic targets. J Med Chem 59(13):5987–6011.  https://doi.org/10.1021/acs.jmedchem.5b01835CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hou JQ, Chen SB, Tan JH, Luo HB, Li D, Gu LQ, Huang ZS (2012) New insights from molecular dynamic simulation studies of the multiple binding modes of a ligand with G-quadruplex DNA. J Comput Aided Mol Des 26(12):1355–1368.  https://doi.org/10.1007/s10822-012-9619-1CrossRefPubMedGoogle Scholar
  5. 5.
    Dixon IM, Lopez F, Tejera AM, Esteve JP, Blasco MA, Pratviel G, Meunier B (2007) A G-quadruplex ligand with 10000-fold selectivity over duplex DNA. J Am Chem Soc 129(6):1502–1503.  https://doi.org/10.1021/ja065591tCrossRefPubMedGoogle Scholar
  6. 6.
    Hou J-Q, Chen S-B, Zan L-P, Ou T-M, Tan J-H, Luyt LG, Huang Z-S (2015) Identification of a selective G-quadruplex DNA binder using a multistep virtual screening approach. Chem Commun 51(1):198–201.  https://doi.org/10.1039/C4CC06951JCrossRefGoogle Scholar
  7. 7.
    Ferreira RS, Simeonov A, Jadhav A, Eidam O, Mott BT, Keiser MJ, McKerrow JH, Maloney DJ, Irwin JJ, Shoichet BK (2010) Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J Med Chem 53(13):4891–4905.  https://doi.org/10.1021/jm100488wCrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gilson M, Given J, Bush B, McCammon J (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069.  https://doi.org/10.1016/S0006-3495(97)78756-3CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107(35):9535–9551.  https://doi.org/10.1021/jp0217839CrossRefGoogle Scholar
  10. 10.
    Hamelberg D, McCammon JA (2004) Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. J Am Chem Soc 126(24):7683–7689.  https://doi.org/10.1021/ja0377908CrossRefPubMedGoogle Scholar
  11. 11.
    Woo HJ, Roux B (2005) Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci 102(19):6825–6830.  https://doi.org/10.1073/pnas.0409005102CrossRefPubMedGoogle Scholar
  12. 12.
    Deng N, Forli S, He P, Perryman A, Wickstrom L, Vijayan SKV, Tiefenbrunn T, Stout CD, Gallicchio E, Olson AJ, Levy RM (2014) Distinguishing binders from false positives by free energy calculations: fragment screening against the flap site of HIV protease. J Phys Chem B 119(3):976–988.  https://doi.org/10.1021/jp506376zCrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Deng N, Wickstrom L, Cieplak P, Lin C, Yang D (2017) Resolving the ligand-binding specificity in c-MYC G-quadruplex DNA: absolute binding free energy calculations and SPR experiment. J Phys Chem B 121(46):10484–10497.  https://doi.org/10.1021/acs.jpcb.7b09406CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Leach A (2001) Molecular modelling: principles and applications (2nd edition). Pearson, New York, NYGoogle Scholar
  15. 15.
  16. 16.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447.  https://doi.org/10.1021/ct700301qCrossRefPubMedGoogle Scholar
  17. 17.
    Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854.  https://doi.org/10.1093/bioinformatics/btt055CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mark Abraham BH, van der Spoel D, Lindahl E (2016) GROMACS Reference ManualGoogle Scholar
  19. 19.
    Case DSC DA, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017. University of California, San FranciscoGoogle Scholar
  20. 20.
    James C, Phillips RB, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802.  https://doi.org/10.1002/jcc.20289CrossRefGoogle Scholar
  21. 21.
    Brooks BR, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  22. 22.
    Votapka LW, Jagger BR, Heyneman AL, Amaro RE (2017) SEEKR: simulation enabled estimation of kinetic rates, a computational tool to estimate molecular kinetics and its application to trypsin-benzamidine binding. J Phys Chem B 121(15):3597–3606.  https://doi.org/10.1021/acs.jpcb.6b09388CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE (2011) How does a drug molecule find its target binding site? J Am Chem Soc 133(24):9181–9183.  https://doi.org/10.1021/ja202726yCrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Perrot P (1998) A to Z of thermodynamics. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791.  https://doi.org/10.1002/jcc.21256CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749.  https://doi.org/10.1021/jm0306430CrossRefPubMedGoogle Scholar
  27. 27.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759.  https://doi.org/10.1021/jm030644sCrossRefPubMedGoogle Scholar
  28. 28.
    Lin C, Wu G, Wang K, Onel B, Sakai S, Shao Y, Yang D (2018) Molecular recognition of the hybrid-2 human telomeric G-quadruplex by epiberberine: insights into conversion of telomeric G-quadruplex structures. Angew Chem Int Ed Eng.  https://doi.org/10.1002/anie.201804667CrossRefGoogle Scholar
  29. 29.
    Luo D, Mu Y (2015) All-atomic simulations on human telomeric G-quadruplex DNA binding with thioflavin T. J Phys Chem B 119(15):4955–4967.  https://doi.org/10.1021/acs.jpcb.5b01107CrossRefPubMedGoogle Scholar
  30. 30.
    Mulholland K, Wu C (2016) Binding of telomestatin to a telomeric G-quadruplex DNA probed by all-atom molecular dynamics simulations with explicit solvent. J Chem Inf Model 56(10):2093–2102.  https://doi.org/10.1021/acs.jcim.6b00473CrossRefPubMedGoogle Scholar
  31. 31.
    Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J 92(11):3817–3829.  https://doi.org/10.1529/biophysj.106.097782CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zgarbova M, Sponer J, Otyepka M, Cheatham TE 3rd, Galindo-Murillo R, Jurecka P (2015) Refinement of the sugar-phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J Chem Theory Comput 11(12):5723–5736.  https://doi.org/10.1021/acs.jctc.5b00716CrossRefPubMedGoogle Scholar
  33. 33.
  34. 34.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174.  https://doi.org/10.1002/jcc.20035CrossRefPubMedGoogle Scholar
  35. 35.
    Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21(2):132–146.  https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-PCrossRefGoogle Scholar
  36. 36.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926.  https://doi.org/10.1063/1.445869CrossRefGoogle Scholar
  37. 37.
    Joung IS, Cheatham TE (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112(30):9020–9041.  https://doi.org/10.1021/jp8001614CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kästner J (2011) Umbrella sampling. Wiley Interdiscip Rev: Comput Mol Sci 1(6):932–942.  https://doi.org/10.1002/wcms.66CrossRefGoogle Scholar
  39. 39.
    Gallicchio E, Andrec M, Felts AK, Levy RM (2005) Temperature weighted histogram analysis method, replica exchange, and transition paths. J Phys Chem B 109(14):6722–6731.  https://doi.org/10.1021/jp045294fCrossRefPubMedGoogle Scholar
  40. 40.
    Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13(8):1011–1021.  https://doi.org/10.1002/jcc.540130812CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Deng Y, Roux B (2006) Calculation of standard binding free energies: aromatic molecules in the T4 lysozyme L99A mutant. J Chem Theory Comput 2(5):1255–1273.  https://doi.org/10.1021/ct060037vCrossRefPubMedGoogle Scholar
  43. 43.
    Deng N, Zhang P, Cieplak P, Lai L (2011) Elucidating the energetics of entropically driven protein–ligand association: calculations of absolute binding free energy and entropy. J Phys Chem B 115(41):11902–11910.  https://doi.org/10.1021/jp204047bCrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22(8):1420–1426.  https://doi.org/10.1063/1.1740409CrossRefGoogle Scholar
  45. 45.
    Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222(6):529–539.  https://doi.org/10.1016/0009-2614(94)00397-1CrossRefGoogle Scholar
  46. 46.
    Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH (2013) Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 139(18):184103.  https://doi.org/10.1063/1.4826261CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98(18):10037–10041.  https://doi.org/10.1073/pnas.181342398CrossRefPubMedGoogle Scholar
  48. 48.
    Deng N, Cui D, Zhang BW, Xia J, Cruz J, Levy R (2018) Comparing alchemical and physical pathway methods for computing the absolute binding free energy of charged ligands. Phys Chem Chem Phys 20(25):17081–17092.  https://doi.org/10.1039/c8cp01524dCrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dai J, Carver M, Hurley LH, Yang D (2011) Solution structure of a 2:1 quindoline–c-MYC G-quadruplex: insights into G-quadruplex-interactive small molecule drug design. J Am Chem Soc 133(44):17673–17680.  https://doi.org/10.1021/ja205646qCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nanjie Deng
    • 1
  1. 1.Department of Chemistry and Physical SciencesPace UniversityNew YorkUSA

Personalised recommendations