High-Throughput LC-MS/MS Method for Chiral Amino Acid Analysis Without Derivatization

  • Yosuke Nakano
  • Moyu Taniguchi
  • Yutaka Umakoshi
  • Daisuke Watai
  • Eiichiro FukusakiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2030)


d-Amino acids have recently attracted much attention in various research fields including medical, clinical, and food industry due to their important biological functions that differ from l-amino acid. Most chiral amino acid separation techniques require complicated derivatization procedures in order to achieve the desirable chromatographic behavior and detectability. This chapter describes a highly sensitive analytical method for the enantioseparation of chiral amino acids without any derivatization process using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method allows the simultaneous analysis of 18 d-amino acids with high sensitivity and reproducibility. Additionally, this chapter also focuses on the application of the method to real samples for the quantification of targeted amino acids.

Key words

d-Amino acid Quantitative analysis Enantioseparation Underivatized Chiral LC-MS/MS 


  1. 1.
    Cava F, Lam H, de Pedro MA, Waldor MK (2011) Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell Mol Life Sci 68:817–831CrossRefGoogle Scholar
  2. 2.
    Ohide H, Miyoshi Y, Maruyama R et al (2011) D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B Analyt Technol Biomed Life Sci 879:3162–3168CrossRefGoogle Scholar
  3. 3.
    Hashimoto A, Nishikawa T, Hayashi T et al (1992) The presence of free D-serine in rat brain. FEBS Lett 296:33–36CrossRefGoogle Scholar
  4. 4.
    Nishikawa T (2011) Analysis of free D-serine in mammals and its biological relevance. J Chromatogr B Analyt Technol Biomed Life Sci 879:3169–3183CrossRefGoogle Scholar
  5. 5.
    Chumakov I, Blumenfeld M, Guerassimenko O et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 99:13675–13680CrossRefGoogle Scholar
  6. 6.
    Ono K, Shishido Y, Park HK et al (2009) Potential pathophysiological role of D-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm 116:1335–1347CrossRefGoogle Scholar
  7. 7.
    Cioffi CL (2013) Modulation of NMDA receptor function as a treatment for schizophrenia. Bioorg Med Chem Lett 23:5034–5044CrossRefGoogle Scholar
  8. 8.
    D’Aniello S, Somorjai I, Garcia-Fernàndez J et al (2011) D-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25:1014–1027CrossRefGoogle Scholar
  9. 9.
    Takigawa Y, Homma H, Lee JA et al (1998) D-aspartate uptake into cultured rat pinealocytes and the concomitant effect on L-aspartate levels and melatonin secretion. Biochem Biophys Res Commun 248:641–647CrossRefGoogle Scholar
  10. 10.
    Long Z, Lee JA, Okamoto T et al (2000) d-Aspartate in a prolactin-secreting clonal strain of rat pituitary tumor cells (GH(3)). Biochem Biophys Res Commun 276:1143–1147CrossRefGoogle Scholar
  11. 11.
    Nagata Y, Homma H, Lee JA, Imai K (1999) D-Aspartate stimulation of testosterone synthesis in rat Leydig cells. FEBS Lett 444:160–164CrossRefGoogle Scholar
  12. 12.
    Tanwar S, Bhushan R (2015) Enantioresolution of amino acids: a decade’s perspective, prospects and challenges. Chromatographia 78:1113–1134CrossRefGoogle Scholar
  13. 13.
    Ilisz I, Berkecz R, Péter A (2008) Application of chiral derivatizing agents in the high-performance liquid chromatographic separation of amino acid enantiomers: a review. J Pharm Biomed Anal 47:1–15CrossRefGoogle Scholar
  14. 14.
    Ilisz I, Aranyi A, Pataj Z, Péter A (2012) Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: a review. J Pharm Biomed Anal 69:28–41CrossRefGoogle Scholar
  15. 15.
    Ilisz I, Aranyi A, Péter A (2013) Chiral derivatizations applied for the separation of unusual amino acid enantiomers by liquid chromatography and related techniques. J Chromatogr A 1296:119–139CrossRefGoogle Scholar
  16. 16.
    Bhushan R, Parshad V (1996) Thin-layer chromatographic separation of enantiomeric dansylamino acids using a macrocyclic antibiotic as a chiral selector. J Chromatogr A 736:235–238CrossRefGoogle Scholar
  17. 17.
    Bhushan R, Brückner H, Kumar V, Gupta D (2007) Indirect TLC resolution of amino acid enantiomers after derivatization with Marfey’s reagent and its chiral variants. J Planar Chromatogr – Mod TLC 20:165–171CrossRefGoogle Scholar
  18. 18.
    Bertrand M, Chabin A, Brack A, Westall F (2008) Separation of amino acid enantiomers VIA chiral derivatization and non-chiral gas chromatography. J Chromatogr A 1180:131–137CrossRefGoogle Scholar
  19. 19.
    Zahradnícková H, Husek P, Simek P (2009) GC separation of amino acid enantiomers via derivatization with heptafluorobutyl chloroformate and Chirasil-L-Val column. J Sep Sci 32:3919–3924CrossRefGoogle Scholar
  20. 20.
    Bhushan R, Nagar H (2013) Indirect enantioseparation of proteinogenic amino acids using naproxen-based chiral derivatizing reagent and HPLC. Biomed Chromatogr 27:750–756CrossRefGoogle Scholar
  21. 21.
    Cui Y, Jiang Z, Sun J et al (2014) Enantiomeric purity determination of (L)-amino acids with pre-column derivatization and chiral stationary phase: development and validation of the method. Food Chem 158:401–407CrossRefGoogle Scholar
  22. 22.
    Hamase K, Nakauchi Y, Miyoshi Y et al (2014) Enantioselective determination of extraterrestrial amino acids using a two-dimensional chiral high-performance liquid chromatographic system. Chromatography 35:103–110CrossRefGoogle Scholar
  23. 23.
    Gübitz G, Schmid MG (2001) Chiral separation by chromatographic and electromigration techniques. A review. Biopharm Drug Dispos 22:291–336CrossRefGoogle Scholar
  24. 24.
    Paik M-J, Kang JS, Huang B-S et al (2013) Development and application of chiral crown ethers as selectors for chiral separation in high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Chromatogr A 1274:1–5CrossRefGoogle Scholar
  25. 25.
    Konya Y, Bamba T, Fukusaki E (2016) Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J Biosci Bioeng 121:349–353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yosuke Nakano
    • 1
  • Moyu Taniguchi
    • 1
  • Yutaka Umakoshi
    • 1
  • Daisuke Watai
    • 1
  • Eiichiro Fukusaki
    • 1
    Email author
  1. 1.Department of Biotechnology, Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations