Advertisement

Response Standardization for Drift Correction and Multivariate Calibration Transfer in “Electronic Tongue” Studies

  • Vitaly Panchuk
  • Valentin Semenov
  • Larisa Lvova
  • Andrey Legin
  • Dmitry Kirsanov
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2027)

Abstract

The procedures for response standardization in “electronic tongue” (ET) studies are described. The construction of reliable multivariate calibration for “electronic tongue” requires the analysis of a large number of representative samples both with ET and reference techniques. This is a laborious and expensive process. Long-term sensor array operation leads to the changes in sensor response characteristics and thus invalidates the multivariate predictive models. Moreover, due to the individual parameters of each sensor in different sensor arrays, it is not possible to use the calibration model for one system together with the data acquired by another system, even if they have the same sensors. Both of these issues lead to the necessity of frequent sensor array calibration which would be ideal to avoid. Instead of recalibration, these two problems can be handled using mathematical methods intended for sensor response standardization. This chapter describes two popular methods of standardization which can be used for both drift correction and calibration transfer. Thus, significant efforts on measuring representative sample sets for sensor array recalibration can be avoided.

Key words

Electronic tongue Multivariate calibration Response standardization Calibration transfer Drift correction 

Notes

Acknowledgments

This work was partially financially supported by Government of Russian Federation, Grant 08-08.

References

  1. 1.
    Ciosek P, Wróblewski W (2007) Sensor arrays for liquid sensing—electronic tongue systems. Analyst 132(10):963–978.  https://doi.org/10.1039/b705107gCrossRefPubMedGoogle Scholar
  2. 2.
    Bratov A, Abramova N, Ipatov A (2010) Recent trends in potentiometric sensor arrays-a review. Anal Chim Acta 678(2):149–159.  https://doi.org/10.1016/j.aca.2010.08.035CrossRefPubMedGoogle Scholar
  3. 3.
    Brereton R, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, Roger J, Walczak B, Tauler R (2017) Chemometrics in analytical chemistry-part I: history, experimental design and data analysis tools. Anal Bioanal Chem 409(25):5891–5899.  https://doi.org/10.1007/s00216-017-0517-1CrossRefPubMedGoogle Scholar
  4. 4.
    Analytical Methods Committee (1994) Analyst 119:2363–2366.  https://doi.org/10.1039/AN9941902363CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Oliveri P, Casolino MC, Forina M (2010) Chemometric brains for artificial tongues. Adv Food Nutr Res 61(C):57–117.  https://doi.org/10.1016/B978-0-12-374468-5.00002-7CrossRefPubMedGoogle Scholar
  7. 7.
    Bouveresse E, Massart D (1996) Standardisation of near-infrared spectrometric instruments: a review. Vib Spectrosc 11:3–15.  https://doi.org/10.1016/0924-2031(95)00055-0CrossRefGoogle Scholar
  8. 8.
    Wang Y, Veltkamp D, Kowalski B (1991) Multivariate instrument standardization. Anal Chem 63:2750–2756.  https://doi.org/10.1021/ac00023a016CrossRefGoogle Scholar
  9. 9.
    Brown SD (2009) Transfer of multivariate calibration models. In: Brown SD, Tauler R, Walczak B (eds) Comprehensive chemometrics, vol 3. Elsevier B.V., Amsterdam, chapter 3.08, 2009Google Scholar
  10. 10.
    Khaydukova M, Medina-Plaza C, Rodriguez-Mendez M, Panchuk V, Kirsanov D, Legin A (2017) Multivariate calibration transfer between two different types of multisensor systems. Sensors Actuators B 246:994–1000.  https://doi.org/10.1016/j.snb.2017.02.099CrossRefGoogle Scholar
  11. 11.
    Daszykowski M, Walczak B, Massart D (2002) Representative subset selection. Anal Chim Acta 468:91–103CrossRefGoogle Scholar
  12. 12.
    Kennard R, Stone L (1969) Computer aided design of experiments. Technometrics 11:137–148CrossRefGoogle Scholar
  13. 13.
    Bro R, Smilde A (2014) Principal component analysis. Anal Methods 6:2812–2831.  https://doi.org/10.1039/C3AY41907JCrossRefGoogle Scholar
  14. 14.
    Panchuk V, Lvova L, Kirsanov D, Gonçalves CG, Di Natale C, Paolesse R, Legin A (2016) Extending electronic tongue calibration lifetime through mathematical drift correction: case study of microcystin toxicity analysis in waters. Sensors Actuators B 237:962–968CrossRefGoogle Scholar
  15. 15.
    Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal Methods 5(16):3790–3798CrossRefGoogle Scholar
  16. 16.
    Burman P (1989) A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika 76:503–514CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vitaly Panchuk
    • 1
    • 2
  • Valentin Semenov
    • 1
  • Larisa Lvova
    • 2
    • 3
  • Andrey Legin
    • 1
    • 2
  • Dmitry Kirsanov
    • 1
    • 2
  1. 1.Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Laboratory of Artificial Sensory SystemsITMO UniversitySt. PetersburgRussia
  3. 3.Department of Chemical Science and TechnologiesUniversity “Tor Vergata”RomeItaly

Personalised recommendations