Advertisement

Phytochromes pp 201-213 | Cite as

Rapid Detection of Hormonal Involvement in Light Responses

  • Filip VandenbusscheEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2026)

Abstract

Many aspects of light-controlled metabolism and development of plants depend on hormonal pathways. Here, a method is described to identify such hormonal dependence in light-regulated processes. A number of compounds—hormones and chemicals which interfere with hormonal pathways—are listed because of their usefulness in pharmacological treatment experiments. As an example for practical use of such compounds, elongation growth is discussed. An experimental setup is described in which plants are grown so that their structures develop predominantly in a two-dimensional plane. Time-lapse imaging is used to follow the plants in time, and image analysis reveals changes in plant morphology.

Keywords

Elongation Arabidopsis Auxin Gibberellin Brassinosteroid Imaging 

References

  1. 1.
    Symons GM, Reid JB (2003) Interactions between light and plant hormones during de-etiolation. J Plant Growth Regul 22:3–14CrossRefGoogle Scholar
  2. 2.
    Brunoud G, Wells DM, Oliva M et al (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106CrossRefGoogle Scholar
  3. 3.
    Yang J, Yuan Z, Meng Q et al (2017) Dynamic regulation of auxin response during rice development revealed by newly established hormone biosensor markers. Front Plant Sci 8:256PubMedPubMedCentralGoogle Scholar
  4. 4.
    Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677CrossRefGoogle Scholar
  5. 5.
    Vandenbussche F, Petrášek J, Žádníková P et al (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606CrossRefGoogle Scholar
  6. 6.
    Pauwels L, Barbero GF, Geerinck J et al (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791CrossRefGoogle Scholar
  7. 7.
    Zhao J, Peng P, Schmitz RJ, Decker AD, Tax FE, Li J (2002) Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol 130:1221–1229CrossRefGoogle Scholar
  8. 8.
    Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Müller B (2013) A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol 161:1066–1075CrossRefGoogle Scholar
  9. 9.
    Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743CrossRefGoogle Scholar
  10. 10.
    Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340CrossRefGoogle Scholar
  11. 11.
    Lavy M, Estelle M (2016) Mechanisms of auxin signaling. Development 143:3226–3229CrossRefGoogle Scholar
  12. 12.
    Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34:740–760CrossRefGoogle Scholar
  13. 13.
    Singh AP, Savaldi-Goldstein S (2015) Growth control: brassinosteroid activity gets context. J Exp Bot 66:1123–1132CrossRefGoogle Scholar
  14. 14.
    Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek L a CJ (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183CrossRefGoogle Scholar
  15. 15.
    Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577CrossRefGoogle Scholar
  16. 16.
    De Paepe A, De Grauwe L, Bertrand S, Smalle J, Van Der Straeten D (2005) The Arabidopsis mutant eer2 has enhanced ethylene responses in the light. J Exp Bot 56:2409–2420CrossRefGoogle Scholar
  17. 17.
    Pérez-Pérez JM, Candela H, Micol JL (2009) Understanding synergy in genetic interactions. Trends Genet 25:368–376CrossRefGoogle Scholar
  18. 18.
    Zhu J, Bailly A, Zwiewka M et al (2016) TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell 28:930–948CrossRefGoogle Scholar
  19. 19.
    Prigge MJ, Greenham K, Zhang Y, Santner A, Castillejo C, Mutka AM, O’Malley RC, Ecker JR, Kunkel BN, Estelle M (2016) The Arabidopsis auxin receptor F-box proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram. G3 (Bethesda) 6:1383–1390CrossRefGoogle Scholar
  20. 20.
    Kitahata N, Han S-Y, Noji N et al (2006) A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorg Med Chem 14:5555–5561CrossRefGoogle Scholar
  21. 21.
    Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123:93–100CrossRefGoogle Scholar
  22. 22.
    Nagata N, Min YK, Nakano T, Asami T, Yoshida S (2000) Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid-biosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants. Planta 211:781–790CrossRefGoogle Scholar
  23. 23.
    De Rybel B, Audenaert D, Vert G et al (2009) Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem Biol 16:594–604CrossRefGoogle Scholar
  24. 24.
    Watanabe T, Fujioka S, Yokota T, Takatsuto S (1998) Synthesis and biological activity of 2,3-diol stereoisomers of 28-homobrassinolide and brassinolide. J Chem Res 0:744–745CrossRefGoogle Scholar
  25. 25.
    Dalziel J, Lawrence D (1984) Biochemical and biological effects of kaurene oxidase inhibitors, such as paclobutrazol. In: Menhenett R, Lawrence DK (eds) Monograph-British Plant Growth Regulation Group. British Plant Growth Regulation Group, Wantage, pp 43–47Google Scholar
  26. 26.
    Davière J-M, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151CrossRefGoogle Scholar
  27. 27.
    Ito S, Umehara M, Hanada A, Yamaguchi S, Asami T (2013) Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis. Plant Signal Behav 8:e24193CrossRefGoogle Scholar
  28. 28.
    Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749CrossRefGoogle Scholar
  29. 29.
    Vandenbussche F, Vancompernolle B, Rieu I, Ahmad M, Phillips A, Moritz T, Hedden P, Van Der Straeten D (2007) Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. J Exp Bot 58:4269–4281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory for Functional Plant Biology, Department of BiologyGhent UniversityGhentBelgium

Personalised recommendations