Advertisement

Phytochromes pp 169-177 | Cite as

A Simple Method for Quantification of Protochlorophyllide in Etiolated Arabidopsis Seedlings

  • Matthew J. TerryEmail author
  • Sylwia M. Kacprzak
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2026)

Abstract

Etiolated seedlings accumulate the chlorophyll biosynthesis intermediate protochlorophyllide (Pchlide) and measuring Pchlide can be important for characterizing photomorphogenic mutants that may be affected in chloroplast development. In this chapter we outline a simple and sensitive method for quantifying Pchlide in extracts of Arabidopsis seedlings using fluorescence spectroscopy. This method can be easily adapted to study chloroplast development in a wide range of plant species.

Keywords

Tetrapyrroles Chlorophyll synthesis Chloroplast development Etioplasts Fluorescence spectroscopy 

Notes

Acknowledgments

Work on tetrapyrroles in the MJT laboratory has been supported by the UK Biotechnology and Biological Sciences Research Council. SMK was supported by the Gatsby Charitable Foundation. This chapter is dedicated to the memory of Margareta Ryberg.

References

  1. 1.
    Masuda T, Takamiya K (2004) Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29CrossRefGoogle Scholar
  2. 2.
    Lebedev N, Timko MP (1998) Protochlorophyllide photoreduction. Photosynth Res 58:5–23CrossRefGoogle Scholar
  3. 3.
    Solymosi K, Aronsson H (2013) Etioplasts and their significance in chloroplast biogenesis. In: Biswal B, Krupinska K, Biswal UC (eds) Plastid development in leaves during growth. Springer, Dordrecht, pp 39–71CrossRefGoogle Scholar
  4. 4.
    Waters MT, Langdale JA (2009) The making of a chloroplast. EMBO J 28:2861–2873CrossRefGoogle Scholar
  5. 5.
    Xu X, Paik I, Zhu L, Huq E (2015) Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci 20:641–650CrossRefGoogle Scholar
  6. 6.
    Sperling U, Franck F, van Cleve B, Frick G, Apel K, Armstrong GA (1998) Etioplast differentiation in Arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10:283–296PubMedGoogle Scholar
  7. 7.
    Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH (2004) Phytochrome interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 305:1937–1941CrossRefGoogle Scholar
  8. 8.
    Stephenson PG, Fankhauser C, Terry MJ (2009) PIF3 is a repressor of chloroplast development. Proc Natl Acad Sci U S A 106:7654–7659CrossRefGoogle Scholar
  9. 9.
    Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee C-H, Lee D, Choi G (2009) Phytochromes promote seedling light responses by inhibiting four negatively acting phytochrome-interacting factors. Proc Natl Acad Sci U S A 106:7660–7665CrossRefGoogle Scholar
  10. 10.
    Cheminant S, Wild M, Bouvier F, Pelletier S, Renou JP, Erhardt M, Hayes S, Terry MJ, Genschik P, Achard P (2011) DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis. Plant Cell 23:1849–1860CrossRefGoogle Scholar
  11. 11.
    Zhong S, Shi H, Xue C, We N, Guo H, Deng XW (2014) Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proc Natl Acad Sci U S A 111:3913–3920CrossRefGoogle Scholar
  12. 12.
    McCormac AC, Fischer A, Kumar AM, Söll D, Terry MJ (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 25:549–561CrossRefGoogle Scholar
  13. 13.
    Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98:12826–12831CrossRefGoogle Scholar
  14. 14.
    Sperling U, van Cleve B, Frick G, Apel K, Armstrong GA (1997) Overexpression of light dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedlings survival in white light and protects against photooxidative damage. Plant J 12:649–658CrossRefGoogle Scholar
  15. 15.
    Page MT, McCormac AC, Smith AG, Terry MJ (2017) Singlet oxygen initiates a plastid signal controlling photosynthetic gene expression. New Phytol 213:1168–1180CrossRefGoogle Scholar
  16. 16.
    Danon A, Miersch O, Felix G, op den Camp RG, Apel K (2005) Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J 41:68–80CrossRefGoogle Scholar
  17. 17.
    Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R (2013) Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25:1657–1673CrossRefGoogle Scholar
  18. 18.
    Terry MJ (1997) Phytochrome chromophore-deficient mutants. Plant Cell Environ 20:740–745CrossRefGoogle Scholar
  19. 19.
    Koornneef M, Rolff E, Spruitt CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana L. Heynh. Z Pflanzenphysiol 100:147–160CrossRefGoogle Scholar
  20. 20.
    Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–347CrossRefGoogle Scholar
  21. 21.
    Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13:425–436CrossRefGoogle Scholar
  22. 22.
    Terry MJ, Kendrick RE (1999) Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol 119:143–152CrossRefGoogle Scholar
  23. 23.
    Cornah JE, Terry MJ, Smith AG (2003) Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci 8:224–230CrossRefGoogle Scholar
  24. 24.
    Terry MJ, Ryberg M, Raitt CE, Page AM (2001) Altered etioplast development in phytochrome chromophore-deficient mutants. Planta 214:314–325CrossRefGoogle Scholar
  25. 25.
    Böddi B, Ryberg M, Sundqvist C (1992) Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77 K fluorescence emission spectra. J Photochem Photobiol B Biol 12:389–401CrossRefGoogle Scholar
  26. 26.
    Lebedev N, van Cleve B, Armstrong G, Apel K (1995) Chlorophyll synthesis in a deetiolated (det340) mutant of Arabidopsis without NADPH–protochlorophyllide (PChlide) oxidoreductase (POR) A and photoactive PChlide-F655. Plant Cell 7:2081–2090CrossRefGoogle Scholar
  27. 27.
    Ryberg M, Terry MJ (2002) Analysis of protochlorophyllide reaccumulation in the phytochrome chromophore-deficient aurea and yg-2 mutants of tomato by in vivo fluorescence spectroscopy. Photosynth Res 74:195–203CrossRefGoogle Scholar
  28. 28.
    Shioi Y, Takamiya KI (1992) Monovinyl and divinyl protochlorophyllide pools in etiolated tissues of higher plants. Plant Physiol 100:1291–1295CrossRefGoogle Scholar
  29. 29.
    Schoefs B, Bertrand M, Lemoine Y (1995) Separation of photosynthetic pigments and their precursors by high performance liquid chromatography using a photodiode array detector. J Chromatogr A 692:239–245CrossRefGoogle Scholar
  30. 30.
    Scheumann V, Klement H, Helfrich M, Oster U, Schoch S, Rüdiger W (1999) Protochlorophyllide b does not occur in barley etioplasts. FEBS Lett 445:445–448CrossRefGoogle Scholar
  31. 31.
    Moulin M, Smith AG (2008) A robust method for determination of chlorophyll intermediates by tandem mass spectrometry. In: Allen J, Gantt E, Golbeck J, Osmond B (eds) Photosynthesis: energy from the sun. 14th international congress on photosynthesis. Springer, Heidelberg, pp 1221–11228Google Scholar
  32. 32.
    Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to mg-protoporphyrin IX accumulation. Proc Natl Acad Sci U S A 105:15178–15183CrossRefGoogle Scholar
  33. 33.
    Kahn A (1983) Spectrophotometric quantitation of protochlorophyll(ide): specific absorption and molar extinction coefficients reconsidered. Physiol Plant 59:99–102CrossRefGoogle Scholar
  34. 34.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  35. 35.
    Rebeiz CA, Mattheis JR, Smith BB, Rebeiz CC, Dayton DF (1975) Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. Arch Biochem Biophys 171:549–567CrossRefGoogle Scholar
  36. 36.
    Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations