Quantum Chemical and QM/MM Models in Biochemistry

Part of the Methods in Molecular Biology book series (MIMB, volume 2022)


Quantum chemical (QC) calculations provide a basis for deriving a microscopic understanding of enzymes and photobiological systems. Here we describe how QC models can be used to explore the electronic structure, dynamics, and energetics of biomolecules. We introduce the hybrid quantum mechanics/classical mechanics (QM/MM) approach, where a quantum mechanically described system of interest is embedded in a classically described force field representation of the biochemical surroundings. We also discuss the QM cluster model approach, as well as embedding theories, that provide complementary methodologies to model quantum mechanical effects in biomolecules. The chapter also provides some practical guides for building quantum biochemical models using the quinone reduction catalysis in respiratory complex I and a model reaction in solution as examples.

Key words

Quantum biochemistry QM cluster models DFT Enzyme catalysis Photobiology Proton transfer Oxidoreductase Bioenergetics 



We thank Dr. Mikael P. Johansson for helpful discussions. Computational resources were provided in part by HPC Europa3 grant 2000831 HPCE3 “Mechanism of long-range electron transfer in respiratory complex I.


  1. 1.
    Schrödinger E (1944) What is life? Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Pullman A, Pullman B (1967) Quantum Biochemistry. Wiley-Interscience, New York, NY, pp 1–60Google Scholar
  3. 3.
    Löwdin P-O (1963) Proton tunneling in DNA and its biological implications. Rev Mod Phys 35:724–732CrossRefGoogle Scholar
  4. 4.
    Honig B, Karplus M (1971) Implications of torsional potential of retinal isomers for visual excitation. Nature 229:558–560PubMedCrossRefGoogle Scholar
  5. 5.
    Warshel A, Karplus M (1972) Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization. J Am Chem Soc 94:5612–5625CrossRefGoogle Scholar
  6. 6.
    Zhou X, Sundholm D, Wesołowski TA, Kaila VRI (2014) Spectral tuning of rhodopsin and visual cone pigments. J Am Chem Soc 136:2723–2726PubMedCrossRefGoogle Scholar
  7. 7.
    Suomivuori C-M, Lang L, Sundholm D, Gamiz-Hernandez AP, Kaila VRI (2016) Tuning the protein-induced absorption shifts of retinal in engineered rhodopsin mimics. Chemistry 22:8254–8261PubMedCrossRefGoogle Scholar
  8. 8.
    Cui Q, Elstner M (2014) Density functional tight binding: values of semi-empirical methods in an ab initio era. Phys Chem Chem Phys 16:14368–14377PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gamiz-Hernandez AP, Angelova IN, Send R, Sundholm D, Kaila VRI (2015) Protein-induced color shift of carotenoids in β-crustacyanin. Angew Chem Int Ed 54:11564–11566CrossRefGoogle Scholar
  10. 10.
    Suomivuori C-M, Winter NOC, Hättig C, Sundholm D, Kaila VRI (2016) Exploring the light-capturing properties of photosynthetic chlorophyll clusters using large-scale correlated calculations. J Chem Theory Comput 12:2644–2651PubMedCrossRefGoogle Scholar
  11. 11.
    Andruniow T, Ferre N, Olivucci M (2004) Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proc Natl Acad Sci U S A 101:17908–17913PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Riplinger C, Pinski P, Becker U, Valeev EF, Neese F (2016) Sparse maps—a systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J Chem Phys 144:024109PubMedCrossRefGoogle Scholar
  13. 13.
    Bistoni G, Polyak I, Sparta M, Thiel W, Neese F (2018) Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory. J Chem Theory Comput 14:3524–3531PubMedCrossRefGoogle Scholar
  14. 14.
    Supekar S, Papageorgiou AC, Gemmecker G, Peltzer R, Johansson MP, Tripsianes K, Sattler M, Kaila VRI (2017) Conformational selection of dimethylarginine recognition by the survival motor neuron tudor domain. Angew Chem Int Ed 52:486–490Google Scholar
  15. 15.
    Retegan M, Neese F, Pantazis DA (2013) Convergence of QM/MM and cluster models for the spectroscopic properties of the oxygen-evolving complex in photosystem II. J Chem Theory Comput 9:3832–3842PubMedCrossRefGoogle Scholar
  16. 16.
    Flaig D, Beer M, Ochsenfeld C (2012) Convergence of electronic structure with the size of the QM region: example of QM/MM NMR shieldings. J Chem Theory Comput 8:2260–2271PubMedCrossRefGoogle Scholar
  17. 17.
    Siegbahn PEM, Himo F (2011) The quantum chemical cluster approach for modeling enzyme reactions. Wiley Interdiscip Rev Comput Mol Sci 1:323–336CrossRefGoogle Scholar
  18. 18.
    Siegbahn PEM, Himo F (2009) Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 14:643–651PubMedCrossRefGoogle Scholar
  19. 19.
    Åqvist J, Isaksen GV, Brandsdal BO (2017) Computation of enzyme cold adaptation. Nat Rev Chem 1:0051CrossRefGoogle Scholar
  20. 20.
    Isaksen GV, Åqvist J, Brandsdal BO (2016) Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proc Natl Acad Sci U S A 113:7822–7827PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Reuter N, Dejaegere A, Maigret B, Karplus M (2000) Frontier bonds in QM/MM methods: a comparison of different approaches. J Phys Chem A 104:1720–1735CrossRefGoogle Scholar
  22. 22.
    Maseras F, Morokuma K (1995) IMOMM: a new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16:1170–1179CrossRefGoogle Scholar
  23. 23.
    Wesolowski TA, Shedge S, Zhou X (2015) Frozen-density embedding strategy for multilevel simulations of electronic structure. Chem Rev 115:5891–5928PubMedCrossRefGoogle Scholar
  24. 24.
    Kovyrshin A, Neugebauer J (2016) Analytical gradients for excitation energies from frozen-density embedding. Phys Chem Chem Phys 18:20955–20975PubMedCrossRefGoogle Scholar
  25. 25.
    Höfener S, Visscher L (2016) Wave function frozen-density embedding: coupled excitations. J Chem Theory Comput 12:549–557PubMedCrossRefGoogle Scholar
  26. 26.
    Duarte F, Amrein BA, Blaha-Nelson D, Kamerlin SCL (2015) Recent advances in QM/MM free energy calculations using reference potentials. Biochim Biophys Acta Gen Subj 1850:954–965CrossRefGoogle Scholar
  27. 27.
    Mlýnský V, Banáš P, Šponer J, van der Kamp MW, Mulholland AJ, Otyepka M (2014) Comparison of ab initio, DFT, and semiempirical QM/MM approaches for description of catalytic mechanism of hairpin ribozyme. J Chem Theory Comput 10:1608–1622PubMedCrossRefGoogle Scholar
  28. 28.
    Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249PubMedCrossRefGoogle Scholar
  29. 29.
    Singh UC, Kollman PA (1986) A combinedab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl + Cl? exchange reaction and gas phase protonation of polyethers. J Comput Chem 7:718–730CrossRefGoogle Scholar
  30. 30.
    Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery JA, Morokuma K, Frisch MJ (2006) Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J Chem Theory Comput 2:815–826PubMedCrossRefGoogle Scholar
  31. 31.
    Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11:700–733CrossRefGoogle Scholar
  32. 32.
    Noodleman L, Lovell T, Han WG, Li J, Himo F (2004) Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem Rev 104:459–508PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Torres RA, Lovell T, Noodleman L, Case DA (2003) Density functional and reduction potential calculations of Fe4S4 clusters. J Am Chem Soc 125:1923–1936PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Liao RZ, Thiel W (2012) Comparison of QM-only and QM/MM models for the mechanism of tungsten-dependent acetylene hydratase. J Chem Theory Comput 8:3793–3803PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bakowies D, Thiel W (1996) Hybrid models for combined quantum mechanical and molecular mechanical approaches. J Phys Chem 100:10580–10594CrossRefGoogle Scholar
  36. 36.
    Blomberg MRA, Siegbahn PEM (2006) Quantum chemistry applied to the mechanisms of transition metal containing enzymes—cytochromec oxidase, a particularly challenging case. J Comput Chem 27:1373–1384PubMedCrossRefGoogle Scholar
  37. 37.
    Himo F (2017) Recent trends in quantum chemical modeling of enzymatic reactions. J Am Chem Soc 139:6780–6786PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wesolowski TA, Warshel A (1993) Frozen density functional approach for ab initio calculations of solvated molecules. J Phys Chem 97:8050–8053CrossRefGoogle Scholar
  39. 39.
    Neugebauer J (2007) Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory. J Chem Phys 126:134116PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Neugebauer J (2008) Photophysical properties of natural light-harvesting complexes studied by subsystem density functional theory. J Phys Chem B 112:2207–2217PubMedCrossRefGoogle Scholar
  41. 41.
    Gamiz-Hernandez AP, Jussupow A, Johansson MP, Kaila VRI (2017) Terminal electron–proton transfer dynamics in the quinone reduction of respiratory complex I. J Am Chem Soc 139:16282–16288PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Di Luca A, Gamiz-Hernandez AP, Kaila VRI (2017) Symmetry-related proton transfer pathways in respiratory complex I. Proc Natl Acad Sci U S A 114:E6314–E6321PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kaila VRI (2018) Long-range proton-coupled electron transfer in biological energy conversion: towards mechanistic understanding of respiratory complex I. J R Soc Interface 15:20170916PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Perdew JP (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 577:1–20CrossRefGoogle Scholar
  45. 45.
    Curtiss LA, Redfern PC, Raghavachari K (2005) Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies. J Chem Phys 123:124107PubMedCrossRefGoogle Scholar
  46. 46.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401PubMedCrossRefGoogle Scholar
  47. 47.
    Weymuth T, Couzijn EPA, Chen P, Reiher M (2014) New benchmark set of transition-metal coordination reactions for the assessment of density functionals. J Chem Theory Comput 10:3092–3103PubMedCrossRefGoogle Scholar
  48. 48.
    Jensen KP (2008) Bioinorganic chemistry modeled with the TPSSh density functional. Inorg Chem 47:10357–10365PubMedCrossRefGoogle Scholar
  49. 49.
    Ugur I, Rutherford AW, Kaila VRI (2016) Redox-coupled substrate water reorganization in the active site of Photosystem II—the role of calcium in substrate water delivery. Biochim Biophys Acta Bioenerg 1857:740–748CrossRefGoogle Scholar
  50. 50.
    Finkelmann AR, Senn HM, Reiher M (2014) Hydrogen-activation mechanism of [Fe] hydrogenase revealed by multi-scale modeling. Chem Sci 5:4474–4482CrossRefGoogle Scholar
  51. 51.
    Arbuznikov AV (2007) Hybrid exchange correlation functionals and potentials: concept elaboration. J Struct Chem 48:S1–S31CrossRefGoogle Scholar
  52. 52.
    Siegbahn PEM (2006) The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes. J Biol Inorg Chem 11:695–701PubMedCrossRefGoogle Scholar
  53. 53.
    Waitt C, Ferrara NM, Eshuis H (2016) Thermochemistry and geometries for transition-metal chemistry from the random phase approximation. J Chem Theory Comput 12:5350–5360PubMedCrossRefGoogle Scholar
  54. 54.
    Kussmann J, Beer M, Ochsenfeld C (2013) Linear-scaling self-consistent field methods for large molecules. Wiley Interdiscip Rev Comput Mol Sci 3:614–636CrossRefGoogle Scholar
  55. 55.
    Kussmann J, Ochsenfeld C (2015) Preselective screening for linear-scaling exact exchange-gradient calculations for graphics processing units and general strong-scaling massively parallel calculations. J Chem Theory Comput 11:918–922PubMedCrossRefGoogle Scholar
  56. 56.
    Ufimtsev IS, Martínez TJ (2008) Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. J Chem Theory Comput 4:222–231PubMedCrossRefGoogle Scholar
  57. 57.
    Gaus M, Cui Q, Elstner M (2014) Density functional tight binding: application to organic and biological molecules. Wiley Interdiscip Rev Comput Mol Sci 4:49–61CrossRefGoogle Scholar
  58. 58.
    Sharma S, Sivalingam K, Neese F, Chan GK-L (2014) Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics. Nat Chem 6:927–933PubMedCrossRefGoogle Scholar
  59. 59.
    Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R (2012) Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem Rev 112:108–181PubMedCrossRefGoogle Scholar
  60. 60.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799PubMedCrossRefGoogle Scholar
  61. 61.
    Salomon O, Reiher M, Hess BA (2002) Assertion and validation of the performance of the B3LYP⋆ functional for the first transition metal row and the G2 test set. J Chem Phys 117:4729–4737CrossRefGoogle Scholar
  62. 62.
    Mouesca J-M, Noodleman L, Case DA (1995) Density-functional calculations of spin coupling in [Fe4S4]3+ clusters. Int J Quantum Chem 56:95–102CrossRefGoogle Scholar
  63. 63.
    Cohen AJ, Mori-Sanchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321:792–794PubMedCrossRefGoogle Scholar
  64. 64.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  65. 65.
    Sauer J, Sierka M (2000) Combining quantum mechanics and interatomic potential functions in ab initio studies of extended systems. J Comput Chem 21:1470–1493CrossRefGoogle Scholar
  66. 66.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for diels−alder reactions and Pt(P(t -Bu) 3) 2 + H 2 oxidative addition. J Phys Chem 100:19357–19363CrossRefGoogle Scholar
  67. 67.
    Vreven T, Morokuma K (2003) Investigation of the S0 S1 excitation in bacteriorhodopsin with the ONIOM(MO:MM) hybrid method. Theor Chem Acc 109:125–132CrossRefGoogle Scholar
  68. 68.
    Ryde U (1996) The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations. J Comput Aided Mol Des 10:153–164PubMedCrossRefGoogle Scholar
  69. 69.
    Roßbach S, Ochsenfeld C (2017) Influence of coupling and embedding schemes on QM size convergence in QM/MM approaches for the example of a proton transfer in DNA. J Chem Theory Comput 13:1102–1107PubMedCrossRefGoogle Scholar
  70. 70.
    Das D, Eurenius KP, Billings EM, Sherwood P, Chatfield DC, Hodošček M, Brooks BR (2002) Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method. J Chem Phys 117:10534–10547CrossRefGoogle Scholar
  71. 71.
    Warshel A, Kato M, Pisliakov AV (2007) Polarizable force fields: history, test cases, and prospects. J Chem Theory Comput 3:2034–2045PubMedCrossRefGoogle Scholar
  72. 72.
    Schwabe T, Beerepoot MTP, Olsen JMH, Kongsted J (2015) Analysis of computational models for an accurate study of electronic excitations in GFP. Phys Chem Chem Phys 17:2582–2588PubMedCrossRefGoogle Scholar
  73. 73.
    Röpke M, Pöverlein M, Bärwinkel T, Kaila VRI (2019) Particle exchange in a coupled multi-subsystem quantum chemical calculation setting. In preparationGoogle Scholar
  74. 74.
    Freindorf M, Shao Y, Furlani TR, Kong J (2005) Lennard-Jones parameters for the combined QM/MM method using the B3LYP/6-31G*/AMBER potential. J Comput Chem 26:1270–1278PubMedCrossRefGoogle Scholar
  75. 75.
    Suomivuori C-M, Gamiz-Hernandez AP, Sundholm D, Kaila VRI (2017) Energetics and dynamics of a light-driven sodium-pumping rhodopsin. Proc Natl Acad Sci U S A 114:7043–7048PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kaila VRI, Schotte F, Cho HS, Hummer G, Anfinrud PA (2014) Contradictions in X-ray structures of intermediates in the photocycle of photoactive yellow protein. Nat Chem 6:258–259PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gamiz-Hernandez AP, Kaila VRI (2016) Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein. Phys Chem Chem Phys 18:2802–2809PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Saura P, Suardíaz R, Masgrau L, Lluch JM, González-Lafont À (2014) Unraveling how enzymes can use bulky residues to drive site-selective c–h activation: the case of mammalian lipoxygenases catalyzing arachidonic acid oxidation. ACS Catal 4:4351–4363CrossRefGoogle Scholar
  79. 79.
    Ryde U (2017) How many conformations need to be sampled to obtain converged QM/MM energies? The curse of exponential averaging. J Chem Theory Comput 13:5745–5752PubMedCrossRefGoogle Scholar
  80. 80.
    Li Y, Zhang R, Du L, Zhang Q, Wang W (2016) How many conformations of enzymes should be sampled for DFT/MM calculations? A case study of fluoroacetate dehalogenase. Int J Mol Sci 17:E1372PubMedCrossRefGoogle Scholar
  81. 81.
    Yamamoto T (2008) Variational and perturbative formulations of quantum mechanical/molecular mechanical free energy with mean-field embedding and its analytical gradients. J Chem Phys 129:244104PubMedCrossRefGoogle Scholar
  82. 82.
    Kosugi T, Hayashi S (2012) QM/MM reweighting free energy SCF for geometry optimization on extensive free energy surface of enzymatic reaction. J Chem Theory Comput 8:322–334PubMedCrossRefGoogle Scholar
  83. 83.
    Hayashi S, Uchida Y, Hasegawa T, Higashi M, Kosugi T, Kamiya M (2017) QM/MM geometry optimization on extensive free-energy surfaces for examination of enzymatic reactions and design of novel functional properties of proteins. Annu Rev Phys Chem 68:135–154PubMedCrossRefGoogle Scholar
  84. 84.
    Rosta E, Haranczyk M, Chu ZT, Warshel A (2008) Accelerating QM/MM free energy calculations: representing the surroundings by an updated mean charge distribution. J Phys Chem B 112:5680–5692PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hu H, Yang W (2008) Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem 59:573–601PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rod TH, Ryde U (2005) Accurate QM/MM free energy calculations of enzyme reactions: methylation by catechol O -methyltransferase. J Chem Theory Comput 1:1240–1251PubMedCrossRefGoogle Scholar
  87. 87.
    König G, Hudson PS, Boresch S, Woodcock HL (2014) Multiscale free energy simulations: an efficient method for connecting classical MD simulations to QM or QM/MM free energies using non-boltzmann bennett reweighting schemes. J Chem Theory Comput 10:1406–1419PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hartke B, Grimme S (2015) Reactive force fields made simple. Phys Chem Chem Phys 17:16715–16718PubMedCrossRefGoogle Scholar
  89. 89.
    Senftle TP, Hong S, Islam MM et al (2016) The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput Mater 2:15011CrossRefGoogle Scholar
  90. 90.
    Sham YY, Chu ZT, Tao H, Warshel A (2000) Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Proteins Struct Funct Genet 39:393–407PubMedCrossRefGoogle Scholar
  91. 91.
    Singh N, Warshel A (2010) Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions. Proteins Struct Funct Bioinformatics 78:1705–1723Google Scholar
  92. 92.
    Prager S, Zech A, Aquilante F, Dreuw A, Wesolowski TA (2016) First time combination of frozen density embedding theory with the algebraic diagrammatic construction scheme for the polarization propagator of second order. J Chem Phys 144:204103PubMedCrossRefGoogle Scholar
  93. 93.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Riahi S, Rowley CN (2014) The CHARMM-TURBOMOLE interface for efficient and accurate QM/MM molecular dynamics, free energies, and excited state properties. J Comput Chem 35:2076–2086PubMedCrossRefGoogle Scholar
  96. 96.
    Grossfield A. WHAM: the weighted histogram analysis method.
  97. 97.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  98. 98.
    Sharma V, Belevich G, Gamiz-Hernandez AP, Róg T, Vattulainen I, Verkhovskaya ML, Wikström M, Hummer G, Kaila VRI (2015) Redox-induced activation of the proton pump in the respiratory complex I. Proc Natl Acad Sci U S A 112:11571–11576PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department ChemieTechnische Universität MünchenGarchingGermany

Personalised recommendations