Skip to main content

Transposon Insertion Site Sequencing in a Urinary Tract Model

  • Protocol
  • First Online:
Proteus mirabilis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2021))

Abstract

Transposon sequencing (Tn-seq) is a technique that combines quantitative next-generation sequencing and a saturating transposon mutant library for an organism of interest, and ultimately allows for quantitation of the relative abundance of all of the mutants under a given condition, such as during experimental infection. The massively parallel sequencing capabilities of this technique provide a significant advance over more traditional methods of screening transposon mutant pools or individually determining the fitness contribution of genes of interest. Here, we describe a method for generating a genome-saturating transposon mutant library in Proteus mirabilis, determining the appropriate number of mutants for inoculation in an experimental infection model, preparing transposon insertion junctions for Illumina sequencing, and downstream analysis of mapped DNA sequencing reads for estimation of the contribution of each gene in the genome to fitness during infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barquist L, Langridge GC, Turner DJ, Phan M-D, Turner AK, Bateman A, Parkhill J, Wain J, Gardner PP (2013) A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res 41(8):4549–4564. https://doi.org/10.1093/nar/gkt148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Langridge GC, Phan M-D, Turner DJ, Perkins TT, Parts L, Haase J, Charles I, Maskell DJ, Peters SE, Dougan G, Wain J, Parkhill J, Turner AK (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19(12):2308–2316. https://doi.org/10.1101/gr.097097.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lampe DJ, Grant TE, Robertson HM (1998) Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149(1):179–187

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96(4):1645–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, Knight R, Gordon JI (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6(3):279–289. https://doi.org/10.1016/j.chom.2009.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bachman MA, Breen P, Deornellas V, Mu Q, Zhao L, Wu W, Cavalcoli JD, Mobley HLT (2015) Genome-wide identification of Klebsiella pneumoniae fitness genes during lung infection. mBio 6(3):e00775. https://doi.org/10.1128/mBio.00775-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Armbruster CE, Forsyth-DeOrnellas V, Johnson AO, Smith SN, Zhao L, Wu W, Mobley HLT (2017) Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog 13(6):e1006434. https://doi.org/10.1371/journal.ppat.1006434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santiago M, Matano LM, Moussa SH, Gilmore MS, Walker S, Meredith TC (2015) A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 16(1):252. https://doi.org/10.1186/s12864-015-1361-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hendrixon DR, Akerley BJ, DiRita VJ (2001) Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40(1):214–224. https://doi.org/10.1046/j.1365-2958.2001.02376.x

    Article  Google Scholar 

  10. Kwon YM, Ricke SC, Mandal RK (2016) Transposon sequencing: methods and expanding applications. Appl Microbiol Biotechnol 100(1):31–43. https://doi.org/10.1007/s00253-015-7037-8

    Article  CAS  PubMed  Google Scholar 

  11. Goodman AL, Wu M, Gordon JI (2011) Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat Protoc 6(12):1969–1980. https://doi.org/10.1038/nprot.2011.417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farmer JJ, Hickman FW, Brenner DJ, Schreiber M, Rickenbach DG (1977) Unusual Enterobacteriaceae. “Proteus rettgeri” that “change” into Providencia stuartii. J Clin Microbiol 6(4):373–378

    PubMed  PubMed Central  Google Scholar 

  13. Zhao L, Anderson MT, Wu W, Mobley HLT, Bachman MA (2017) TnseqDiff: identification of conditionally essential genes in transposon sequencing studies. BMC Bioinformatics 18(1):326. https://doi.org/10.1186/s12859-017-1745-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Plummer M (2003) {JAGS}: a program for analysis of {Bayesian} graphical models using {Gibbs} sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria. citeulike-article-id:10263507

    Google Scholar 

  15. Singh K, Xie M, Strawderman WE (2005) Combining information from independent sources through confidence distributions. Ann Stat 33(1):159–183. https://doi.org/10.1214/0090536040000001084

    Article  Google Scholar 

  16. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. https://doi.org/10.2202/1544-6115.1027

    Article  PubMed  Google Scholar 

  17. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445. https://doi.org/10.1073/pnas.1530509100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wiles TJ, Norton JP, Russell CW, Dalley BK, Fischer KF, Mulvey MA (2013) Combining quantitative genetic footprinting and trait enrichment analysis to identify fitness determinants of a bacterial pathogen. PLoS Genet 9(8):e1003716. https://doi.org/10.1371/journal.pgen.1003716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vandewalle K, Festjens N, Plets E, Vuylsteke M, Saeys Y, Callewaert N (2015) Characterization of genome-wide ordered sequence-tagged Mycobacterium mutant libraries by Cartesian pooling-coordinate sequencing. Nat Commun 6:7106. https://doi.org/10.1038/ncomms8106

    Article  CAS  PubMed  Google Scholar 

  20. Morgan RD, Bhatia TK, Lovasco L, Davis TB (2008) MmeI: a minimal Type II restriction-modification system that only modifies one DNA strand for host protection. Nucleic Acids Res 36(20):6558–6570. https://doi.org/10.1093/nar/gkn711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khatiwara A, Jiang T, Sung S-S, Dawoud T, Kim JN, Bhattacharya D, Kim H-B, Ricke SC, Kwon YM (2012) Genome scanning for conditionally essential genes in Salmonella enterica serotype Typhimurium. Appl Environ Microbiol 78(9):3098–3107. https://doi.org/10.1128/aem.06865-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6:767. https://doi.org/10.1038/nmeth.1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gawronski JD, Wong SMS, Giannoukos G, Ward DV, Akerley BJ (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A 106(38):16422–16427. https://doi.org/10.1073/pnas.0906627106

    Article  PubMed  PubMed Central  Google Scholar 

  24. Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B, Coller JA, Fero MJ, McAdams HH, Shapiro L (2011) The essential genome of a bacterium. Mol Syst Biol 7(1):528. https://doi.org/10.1038/msb.2011.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallagher LA, Shendure J, Manoil C (2011) Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. mBio 2(1):e00315–e00310. https://doi.org/10.1128/mBio.00315-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT (2012) Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics 13(1):578. https://doi.org/10.1186/1471-2164-13-578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dawoud TM, Jiang T, Mandal RK, Ricke SC, Kwon YM (2014) Improving the efficiency of transposon mutagenesis in Salmonella enteritidis by overcoming host-restriction barriers. Mol Biotechnol 56(11):1004–1010. https://doi.org/10.1007/s12033-014-9779-4

    Article  CAS  PubMed  Google Scholar 

  28. Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, Hoover CA, Blow MJ, Bristow J, Butland G, Arkin AP, Deutschbauer A (2015) Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. mBio 6(3):e00306–e00315. https://doi.org/10.1128/mBio.00306-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsie E. Armbruster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Forsyth, V.S., Mobley, H.L.T., Armbruster, C.E. (2019). Transposon Insertion Site Sequencing in a Urinary Tract Model. In: Pearson, M. (eds) Proteus mirabilis. Methods in Molecular Biology, vol 2021. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9601-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9601-8_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9600-1

  • Online ISBN: 978-1-4939-9601-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics