Skip to main content

A Microcavity Array-Based 3D Model System of the Hematopoietic Stem Cell Niche

Part of the Methods in Molecular Biology book series (MIMB,volume 2017)

Abstract

Despite huge advances in recent years, the interaction between hematopoietic stem and progenitor cells (HSPCs) and their niches in the bone marrow is still far from being fully understood. One reason is that hematopoiesis is a multi-step maturation process leading to HSPC heterogeneity. Subpopulations of HSPCs can be identified by clonogenic assays or in serial transplantation experiments in mice following sublethal irradiation, but it is very complex to reproduce or even maintain stem cell plasticity in vitro. Advanced model systems have been developed that allow to precisely control and analyze key components of the physiologic microenvironment for not only fundamental research purposes but, as a long-term goal, also for clinical applications. In this chapter, we describe our approach of building an artificial hematopoietic stem cell niche in the form of polymer film-based microcavities with a diameter of 300 μm and a depth of up to 300 μm and arranged in a 634-cavity array. The polymer films are provided with 3 μm pores and thus allow perfusion of the culture medium. The microcavity arrays can be inserted into a microbioreactor where a closed circulation loop can be tightly controlled with regard to medium flow and gas supply. The microcavity arrays were used for a three-dimensional (3D) co-culture of MSCs and HSPCs in a defined ratio over a time period of up to 21 days. With this setup, it could be demonstrated that the HSPCs maintained their stem cell characteristics more efficiently as compared to conventional monolayer co-culture controls.

Key words

  • Microthermoforming
  • Microcavity array
  • MSC-HSPC co-culture
  • Perfusion
  • Microbioreactor

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9574-5_7
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9574-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Till JE, Mc Culloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    CAS  CrossRef  Google Scholar 

  2. Worton RG, McCulloch EA, Till JE (1969) Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med 130(1):91–103

    CAS  CrossRef  Google Scholar 

  3. Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91(3):335–344

    CAS  CrossRef  Google Scholar 

  4. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  5. Lord BI, Testa NG, Hendry JH (1975) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46(1):65–72

    CAS  PubMed  Google Scholar 

  6. Gong JK (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science 199(4336):1443–1445

    CAS  CrossRef  Google Scholar 

  7. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    CAS  CrossRef  Google Scholar 

  8. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Fend JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    CAS  CrossRef  Google Scholar 

  9. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    CAS  CrossRef  Google Scholar 

  10. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334

    CAS  CrossRef  Google Scholar 

  11. Yu VW, Scadden DT (2016) Hematopoietic stem cell and its bone marrow niche. Curr Top Dev Biol 118:21–44

    CAS  CrossRef  Google Scholar 

  12. Wei Q, Frenette PS (2018) Niches for hematopoietic stem cells and their progeny. Immunity 48(4):632–648

    CAS  CrossRef  Google Scholar 

  13. Ugarte F, Forsberg EC (2013) Haematopoietic stem cell niches: new insights inspire new questions. EMBO J 32(19):2535–2547

    CAS  CrossRef  Google Scholar 

  14. Mokhtari S, Baptista PM, Vyas DA, Freeman CJ, Moran E, Brovold M, Llamazares GA, Lamar Z, Porada CD, Soker S, Almeida-Porada G (2018) Evaluating interaction of cord blood hematopoietic stem/progenitor cells with functionally integrated three-dimensional microenvironments. Stem Cells Transl Med 7(3):271–282

    CAS  CrossRef  Google Scholar 

  15. Nies C, Gottwald E (2017) Artificial hematopoietic stem cell niches–dimensionality matters. Adv Tissue Eng Regen Med Open Access 2(5):236–247

    Google Scholar 

  16. Shen H, Yu H, Liang PH, Cheng H, XuFeng R, Yuan Y, Zhang P, Smith CA, Chend T (2012) An acute negative bystander effect of gamma-irradiated recipients on transplanted hematopoietic stem cells. Blood 119(15):3629–3736

    CAS  CrossRef  Google Scholar 

  17. Choi JS, Mahadik BP, Harley BA (2015) Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnol J 10(10):1529–1545

    CAS  CrossRef  Google Scholar 

  18. Bello AB, Park H, Lee SH (2018) Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomater 72:1–15

    CAS  CrossRef  Google Scholar 

  19. Wuchter P, Saffrich R, Giselbrecht S, Nies C, Lorig H, Kolb S, Ho AD, Gottwald E (2016) Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell Tissue Res 364(3):573–584

    CAS  CrossRef  Google Scholar 

  20. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    CAS  CrossRef  Google Scholar 

  21. Wuchter P, Vetter M, Saffrich R, Diehlmann A, Bieback K, Ho AD, Horn P (2016) Evaluation of GMP-compliant culture media for in vitro expansion of human bone marrow mesenchymal stromal cells. Exp Hematol 44(6):508–518

    CAS  CrossRef  Google Scholar 

  22. Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Spring H, Ho AD, Franke WW (2007) Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 328(3):499–514

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gottwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Gottwald, E., Nies, C., Wuchter, P., Saffrich, R., Truckenmüller, R., Giselbrecht, S. (2019). A Microcavity Array-Based 3D Model System of the Hematopoietic Stem Cell Niche. In: Klein, G., Wuchter, P. (eds) Stem Cell Mobilization. Methods in Molecular Biology, vol 2017. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9574-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9574-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9573-8

  • Online ISBN: 978-1-4939-9574-5

  • eBook Packages: Springer Protocols