In Vitro Dynamic Phenotyping for Testing Novel Mobilizing Agents

Part of the Methods in Molecular Biology book series (MIMB, volume 2017)


A new method to quantify the influence of mobilization agents on the dynamics of human hematopoietic stem and progenitor cells (HSPC) is introduced. Different from the microscopy-based high-content screening relying on multiple staining, machine learning, and molecular-level perturbation, the proposed method sheds light on the “dynamics” of HSPC in the presence of extrinsic factors, including SDF1α and mobilization agents. A well-defined model of the bone marrow niche is fabricated by the deposition of planar lipid membranes on glass slides (called supported membranes) displaying ligand molecules at precisely controlled surface densities. The dynamics of human HSPC, CD34+ cells from umbilical cord blood or peripheral blood, are monitored by time-lapse, live cell imaging with a standard phase-contrast microscopy or a specially designed microinterferometry in the absence or presence of mobilization agents. After extracting the contour of each cell, one can analyze the dynamics of cell “shapes” step-by-step, yielding various levels of information ranging from the principal mode of deformation, the persistence of deformation patterns, and the energy consumption by HSPC in the absence and presence of mobilization agents. Moreover, by tracking the migration trajectories of HSPC, one can gain insight how mobilization agents influence the “motion” of HSPC. As these readouts can be connected to a theoretical model, this strategy enables one to classify the influence of not only mobilization agents but also target-specific inhibitors or other treatments in quantitative indices.

Key words

Supported membrane Cell adhesion Cell migration Theoretical model 



M.T. is grateful to Anthony D. Ho for insightful suggestions and continuous supports. M.T. also thanks P. Wuchter, R. Saffrich, and V. Eckstein for the long-lasting collaboration bridging clinical hematology and physics; A. Burk, C. Monzel, H. Yoshikawa, J. Thoma, and A. Yamamoto for developing the experimental and analytical platforms; and T. Ohta for the development of theoretical models. M.T. thanks the German Science Foundation (SFB873 B07), JSPS (17H00855, 16KT0070), and Nakatani Foundation for supports.


  1. 1.
    Zhang J, Niu C, Ye L, Huang H, He X, Tong W-G, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841PubMedCrossRefGoogle Scholar
  2. 2.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Puch S, Armeanu S, Kibler C, Johnson KR, Müller CA, Wheelock MJ, Klein G (2001) N-cadherin is developmentally regulated and functionally involved in early hematopoietic cell differentiation. J Cell Sci 114(8):1567–1577PubMedGoogle Scholar
  4. 4.
    Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Hembree M, Yin T, Nakamura Y, Gomei Y, Takubo K, Shiama H, Matsuoka S, Li L, Suda T (2010) Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6(3):194–198PubMedCrossRefGoogle Scholar
  5. 5.
    Wein F, Pietsch L, Saffrich R, Wuchter P, Walenda T, Bork S, Horn P, Diehlmann A, Eckstein V, Ho AD, Wagner W (2010) N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res 4(2):129–139PubMedCrossRefGoogle Scholar
  6. 6.
    Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34(+) hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34(+) progenitors to peripheral blood. J Exp Med 185(1):111–120PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Möhle R, Bautz F, Rafii S, Moore MAS, Brugger W, Kanz L (1998) The chemokine receptor CXCR-4 is expressed on CD34(+) hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91(12):4523–4530PubMedGoogle Scholar
  8. 8.
    Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N, Margalit R, Zsak M, Nagler A, Hardan I, Resnick I, Rot A, Lapidot T (2005) Chemokine receptor CXCR4–dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol 6:1038–1046PubMedCrossRefGoogle Scholar
  9. 9.
    Zepeda-Moreno A, Saffrich R, Walenda T, Hoang VT, Wuchter P, Sánchez-Enríquez S, Corona-Rivera A, Wagner W, Ho AD (2012) Modeling SDF-1–induced mobilization in leukemia cell lines. Exp Hematol 40(8):666–674PubMedCrossRefGoogle Scholar
  10. 10.
    To LB, Haylock DN, Simmons PJ, Juttner CA (1997) The biology and clinical uses of blood stem cells. Blood 89(7):2233–2258PubMedGoogle Scholar
  11. 11.
    Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354(17):1813–1826PubMedCrossRefGoogle Scholar
  12. 12.
    Duong HK, Savani BN, Copelan E, Devine S, Costa LJ, Wingard JR, Shaughnessy P, Majhail N, Perales M-A, Cutler CS, Bensinger W, Litzow MR, Mohty M, Champlin RE, Leather H, Giralt S, Carpenter PA (2014) Peripheral blood progenitor cell mobilization for autologous and allogeneic hematopoietic cell transplantation: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 20(9):1262–1273PubMedCrossRefGoogle Scholar
  13. 13.
    Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3(7):687–694PubMedCrossRefGoogle Scholar
  14. 14.
    Welte K (2014) G-CSF: filgrastim, lenograstim and biosimilars. Expert Opin Biol Ther 14(7):983–993PubMedCrossRefGoogle Scholar
  15. 15.
    Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K, Goldschmidt H, Ho AD (2010) Poor mobilization of hematopoietic stem cells—definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant 16(4):490–499PubMedCrossRefGoogle Scholar
  16. 16.
    Pusic I, DiPersio JF (2010) Update on clinical experience with AMD3100, an SDF-1/CXCL12–CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr Opin Hematol 17(4):319–326PubMedCrossRefGoogle Scholar
  17. 17.
    Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dar A, Schajnovitz A, Lapid K, Kalinkovich A, Itkin T, Ludin A, Kao WM, Battista M, Tesio M, Kollet O, Cohen NN, Margalit R, Buss EC, Baleux F, Oishi S, Fujii N, Larochelle A, Dunbar CE, Broxmeyer HE, Frenette PS, Lapidot T (2011) Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia 25:1286–1296PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wuchter P, Leinweber C, Saffrich R, Hanke M, Eckstein V, Ho AD, Grunze M, Rosenhahn A (2014) Plerixafor induces the rapid and transient release of stromal cell-derived factor-1 alpha from human mesenchymal stromal cells and influences the migration behavior of human hematopoietic progenitor cells. Cell Tissue Res 355(2):315–326PubMedCrossRefGoogle Scholar
  20. 20.
    Hoellenriegel J, Zboralski D, Maasch C, Rosin NY, Wierda WG, Keating MJ, Kruschinski A, Burger JA (2014) The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood 123(7):1032–1039PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Boutros M, Heigwer F, Laufer C (2015) Microscopy-based high-content screening. Cell 163(6):1314–1325PubMedCrossRefGoogle Scholar
  22. 22.
    Schmitt L, Dietrich C, Tampe R (1994) Synthesis and characterization of chelator-lipids for reversible immobilization of engineered proteins at self-assembled lipid interfaces. J Am Chem Soc 116(19):8485–8491CrossRefGoogle Scholar
  23. 23.
    Rudd AK, Valls Cuevas JM, Devaraj NK (2015) SNAP-tag-reactive lipid anchors enable targeted and spatiotemporally controlled localization of proteins to phospholipid membranes. J Am Chem Soc 137(15):4884–4887PubMedCrossRefGoogle Scholar
  24. 24.
    Kaindl T, Rieger H, Kaschel L-M, Engel U, Schmaus A, Sleeman J, Tanaka M (2012) Spatio-temporal patterns of pancreatic cancer cells expressing CD44 isoforms on supported membranes displaying hyaluronic acid oligomers arrays. PLoS One 7(8):e42991PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rieger H, Yoshikawa HY, Quadt K, Nielsen MA, Sanchez CP, Salanti A, Tanaka M, Lanzer M (2015) Cytoadhesion of plasmodium falciparum–infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced. Blood 125(2):383–391PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kern W, Puotinen DA (1970) Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev 31:187–206Google Scholar
  27. 27.
    Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271(5245):43–48PubMedCrossRefGoogle Scholar
  28. 28.
    Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437(7059):656–663PubMedCrossRefGoogle Scholar
  29. 29.
    Körner A, Deichmann C, Rossetti FF, Köhler A, Konovalov OV, Wedlich D, Tanaka M (2013) Cell differentiation of pluripotent tissue sheets immobilized on supported membranes displaying cadherin-11. PLoS One 8(2):e54749PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Burk AS, Monzel C, Yoshikawa HY, Wuchter P, Saffrich R, Eckstein V, Tanaka M, Ho AD (2015) Quantifying adhesion mechanisms and dynamics of human hematopoietic stem and progenitor cells. Sci Rep 5:9370PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Monzel C, Becker AS, Saffrich R, Wuchter P, Eckstein V, Ho AD, Tanaka M (2018) Dynamic cellular phenotyping defines specific mobilization mechanisms of human hematopoietic stem and progenitor cells induced by SDF1α versus synthetic agents. Sci Rep 8(1):1841PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ludwig A, Saffrich R, Eckstein V, Bruckner T, Wagner W, Ho AD, Wuchter P (2014) Functional potentials of human hematopoietic progenitor cells are maintained by mesenchymal stromal cells and not impaired by plerixafor. Cytotherapy 16(1):111–121PubMedCrossRefGoogle Scholar
  33. 33.
    Dexter TM, Moore MAS (1977) In vitro duplication and cure of haemopoietic defects in genetically anaemic mice. Nature 269(5627):412–414PubMedCrossRefGoogle Scholar
  34. 34.
    Vater A, Sahlmann J, Kröger N, Zöllner S, Lioznov M, Maasch C, Buchner K, Vossmeyer D, Schwoebel F, Purschke WG, Vonhoff S, Kruschinski A, Hübel K, Humphrey M, Klussmann S, Fliegert F (2013) Hematopoietic stem and progenitor cell mobilization in mice and humans by a first-in-class mirror-image oligonucleotide inhibitor of CXCL12. Clin Pharmacol Ther 94(1):150–157PubMedCrossRefGoogle Scholar
  35. 35.
    Rädler J, Sackmann E (1993) Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. J Phys II France 3(5):727–748CrossRefGoogle Scholar
  36. 36.
    Limozin L, Sengupta K (2009) Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. ChemPhysChem 10:2752–2768PubMedCrossRefGoogle Scholar
  37. 37.
    Yamamoto A, Mishima S, Maruyama N, Sumita M (1998) A new technique for direct measurement of the shear force necessary to detach a cell from a material. Biomaterials 19(7):871–879PubMedCrossRefGoogle Scholar
  38. 38.
    Sagvolden G, Giaever I, Pettersen EO, Feder J (1999) Cell adhesion force microscopy. Proc Natl Acad Sci U S A 96(2):471–476PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chen S, Springer TA (2001) Selectin receptor–ligand bonds: formation limited by shear rate and dissociation governed by the bell model. Proc Natl Acad Sci U S A 98(3):950–955PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Landau LD, Lifshitz EM (1987) Chapter II: Viscous fluids. In: Landau LD, Lifshitz EM (eds) Fluid mechanics, 2nd edn. Pergamon, New York, pp 44–94CrossRefGoogle Scholar
  41. 41.
    Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshikawa HY, Rossetti FF, Kaufmann S, Kaindl T, Madsen J, Engel U, Lewis AL, Armes SP, Tanaka M (2011) Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels. J Am Chem Soc 133(5):1367–1374PubMedCrossRefGoogle Scholar
  43. 43.
    Yu L, Li J, Hong J, Takashima Y, Fujimoto N, Nakajima M, Yamamoto A, Dong X, Dang Y, Hou Y, Yang W, Minami I, Okita K, Tanaka M, Luo C, Tang F, Chen Y, Tang C, Kotera H, Liu L (2018) Low cell-matrix adhesion reveals two subtypes of human pluripotent stem cells. Stem Cell Rep 11(1):142–156CrossRefGoogle Scholar
  44. 44.
    Partin AW, Schoeniger JS, Mohler JL, Coffey DS (1989) Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc Natl Acad Sci U S A 86(4):1254–1258PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ohta T, Monzel C, Becker AS, Ho AD, Tanaka M (2018) Simple physical model unravels influences of chemokine on shape deformation and migration of human hematopoietic stem cells. Sci Rep 8(1):10630PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Azzam RMA, Bashara NM (1978) Ellipsometry and polarized light. Phys Today 31(11):72CrossRefGoogle Scholar
  47. 47.
    Seitz PC, Reif MD, Konovalov OV, Jordan R, Tanaka M (2009) Modulation of substrate–membrane interactions by linear poly(2-methyl-2-oxazoline) spacers revealed by X-ray reflectivity and ellipsometry. ChemPhysChem 10(16):2876–2883PubMedCrossRefGoogle Scholar
  48. 48.
    Fragneto-Cusani G (2001) Neutron reflectivity at the solid/liquid interface: examples of applications in biophysics. J Phys Condens Matter 13(21):4973–4989CrossRefGoogle Scholar
  49. 49.
    Rossetti FF, Schneck E, Fragneto G, Konovalov OV, Tanaka M (2015) Generic role of polymer supports in the fine adjustment of interfacial interactions between solid substrates and model cell membranes. Langmuir 31(15):4473–4480PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physical Chemistry of Biosystems, Institute of Physical ChemistryHeidelberg UniversityHeidelbergGermany
  2. 2.Center for Integrative Medicine and Physics, Institute for Advanced StudyKyoto UniversityKyotoJapan

Personalised recommendations