Advertisement

Malaria Situation in Latin America and the Caribbean: Residual and Resurgent Transmission and Challenges for Control and Elimination

  • Marcelo U. FerreiraEmail author
  • Marcia C. Castro
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2013)

Abstract

Despite recent progress toward malaria elimination in Latin America and the Caribbean, with an overall 62% decrease in incidence between 2000 and 2015, malaria remains endemic to 21 countries and territories in the region, where 120 million people are exposed to some risk of infection. Here we review recent epidemiologic trends, highlight current challenges, and briefly discuss the relative role of traditional and novel strategies for better malaria control and elimination across the continent.

Key words

Malaria Latin America Epidemiology Control Elimination 

Notes

Acknowledgments

The authors’ malaria-related studies have been funded by the National Institute of Allergy and Infectious Diseases, the National Institutes of Health (U19 AI089681 to Joseph M. Vinetz), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2016/18740-9 to MUF), Brazil. MUF receives a senior researcher scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil; MCC received a visitor researcher scholarship from FAPESP (2013/17259-7).

References

  1. 1.
    Pan American Health Organization (2016) Report on the Situation of Malaria in the Americas, 2000–2015. Regional Malaria Program, Pan American Health Organization, Washington, D.C.Google Scholar
  2. 2.
    Hinman EH (1947) Recent trends in malaria control in Latin America. Mosq News 7:144–151PubMedGoogle Scholar
  3. 3.
    Prothero RM (1995) Malaria in Latin America: Environmental and human factors. Bull Latin Am Res 14:357–365CrossRefGoogle Scholar
  4. 4.
    Pan American Health Organization (2017) Interactive Malaria Statistics. Pan American Health Organization, Washington. http://ais.paho.org/phip/viz/malaria_surv_API_popup.aspGoogle Scholar
  5. 5.
    Ferreira MU, Castro MC (2016) Challenges for malaria elimination in Brazil. Malar J 15:284CrossRefGoogle Scholar
  6. 6.
    Oliveira-Ferreira J, Lacerda MV, Brasil P et al (2010) Malaria in Brazil: an overview. Malar J 9:115CrossRefGoogle Scholar
  7. 7.
    Herrera S, Ochoa-Orozco SA, González IJ et al (2015) Prospects for malaria elimination in Mesoamerica and Hispaniola. PLoS Negl Trop Dis 9:e0003700CrossRefGoogle Scholar
  8. 8.
    Lemoine JF, Boncy J, Filler S et al (2017) Haiti's commitment to malaria elimination: progress in the face of challenges, 2010-2016. Am J Trop Med Hyg 97(4 Suppl):43–48CrossRefGoogle Scholar
  9. 9.
    Weppelmann TA, Carter TE, Chen Z et al (2013) High frequency of the erythroid silent Duffy antigen genotype and lack of Plasmodium vivax infections in Haiti. Malar J 12:30CrossRefGoogle Scholar
  10. 10.
    Carter KH, Singh P, Mujica OJ et al (2015) Malaria in the Americas: trends from 1959 to 2011. Am J Trop Med Hyg 92:302–316CrossRefGoogle Scholar
  11. 11.
    Elbadry MA, Al-Khedery B, Tagliamonte MS et al (2015) High prevalence of asymptomatic malaria infections: a cross-sectional study in rural areas in six departments in Haiti. Malar J 14:510CrossRefGoogle Scholar
  12. 12.
    Recht J, Siqueira AM, Monteiro WM et al (2017) Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar J 16:273CrossRefGoogle Scholar
  13. 13.
    Griffing SM, Gamboa D, Udhayakumar V (2013) The history of 20th century malaria control in Peru. Malar J 12:303CrossRefGoogle Scholar
  14. 14.
    Quispe AM, Llanos-Cuentas A, Rodriguez H et al (2016) Accelerating to Zero: Strategies to eliminate malaria in the Peruvian Amazon. Am J Trop Med Hyg 94:1200–1207CrossRefGoogle Scholar
  15. 15.
    Failoc-Rojas VE, Molina-Ayasta C (2016) Malaria in South America: the target is close. Am J Trop Med Hyg 95:735–735CrossRefGoogle Scholar
  16. 16.
    Ministerio de Salud del Perú (2015) Boletín Epidemiológico (Lima): Ministerio de Salud del Perú. http://www.dge.gob.pe/boletin.php
  17. 17.
    da Silva-Nunes M, Moreno M, Conn JE et al (2012) Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta Trop 121:281–291CrossRefGoogle Scholar
  18. 18.
    Reinbold-Wasson DD, Sardelis MR, Jones JW et al (2012) Determinants of Anopheles seasonal distribution patterns across a forest to periurban gradient near Iquitos, Peru. Am J Trop Med Hyg 86:459–463CrossRefGoogle Scholar
  19. 19.
    Griffing SM, Villegas L, Udhayakumar V (2014) Malaria control and elimination, Venezuela, 1800s–1970s. Emerg Infect Dis 20:1691CrossRefGoogle Scholar
  20. 20.
    Pan American Health Organization (2017) Epidemiological Alert: Increase in cases of malaria. Pan American Health Organization, Washington, D.C.. http://www.paho.org/hq/index.php?option=com_docman&task=doc_download&Itemid=&gid=38146&lang=ptGoogle Scholar
  21. 21.
    Musset L, Pelleau S, Girod R et al (2014) Malaria on the Guiana Shield: a review of the situation in French Guiana. Mem Inst Oswaldo Cruz 109:525–533CrossRefGoogle Scholar
  22. 22.
    Hiwat H, Hardjopawiro LS, Takken W et al (2012) Novel strategies lead to pre-elimination of malaria in previously high-risk areas in Suriname, South America. Malar J 11:10CrossRefGoogle Scholar
  23. 23.
    Adhin MR, Labadie-Bracho M, Vreden S (2014) Gold mining areas in Suriname: reservoirs of malaria resistance? Infect Drug Resist 7:111–116CrossRefGoogle Scholar
  24. 24.
    Chenet SM, Akinyi Okoth S, Huber CS et al (2016) Independent emergence of the Plasmodium falciparum kelch propeller domain mutant allele C580Y in Guyana. J Infect Dis 213:1472–1475CrossRefGoogle Scholar
  25. 25.
    Douine M, Mosnier E, Le Hingrat Q et al (2017) Illegal gold miners in French Guiana: a neglected population with poor health. BMC Public Health 18:23CrossRefGoogle Scholar
  26. 26.
    Pommier de Santi V, Dia A, Adde A et al (2016) Malaria in French Guiana linked to illegal gold mining. Emerg Infect Dis 22:344–346CrossRefGoogle Scholar
  27. 27.
    Pommier de Santi V, Djossou F, Barthes N et al (2016) Malaria hyperendemicity and risk for artemisinin resistance among illegal gold miners, French Guiana. Emerg Infect Dis 22:903–906CrossRefGoogle Scholar
  28. 28.
    Douine M, Lazrek Y, Blanchet D et al (2017) Predictors of antimalarial self-medication in illegal gold miners in French Guiana: a pathway towards artemisinin resistance. J Antimicrob Chemother 73:231–239CrossRefGoogle Scholar
  29. 29.
    Nacher M, Guerin PJ, Demar-Pierre M et al (2013) Made in Europe: will artemisinin resistance emerge in French Guiana? Malar J 12:152CrossRefGoogle Scholar
  30. 30.
    Cheng Q, Cunningham J, Gatton ML (2015) Systematic review of sub-microscopic P. vivax infections: prevalence and determining factors. PLoS Negl Trop Dis 9:e3413CrossRefGoogle Scholar
  31. 31.
    White NJ, Imwong M (2012) Relapse. Adv Parasitol 80:113–150CrossRefGoogle Scholar
  32. 32.
    Luzzatto L, Seneca E (2014) G6PD deficiency: a classic example of pharmacogenetics with ongoing clinical implications. Br J Haematol 164:469–480CrossRefGoogle Scholar
  33. 33.
    Alexandre MA, Ferreira CO, Siqueira AM et al (2010) Severe Plasmodium vivax malaria, Brazilian Amazon. Emerg Infect Dis 16:1611–1614CrossRefGoogle Scholar
  34. 34.
    Lacerda MV, Fragoso SC, Alecrim MG et al (2012) Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis 55:e67–e74CrossRefGoogle Scholar
  35. 35.
    Quispe AM, Pozo E, Guerrero E et al (2014) Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria? Am J Trop Med Hyg 91:11–17CrossRefGoogle Scholar
  36. 36.
    Arnott A, Barry AE, Reeder JC (2012) Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J 11:14CrossRefGoogle Scholar
  37. 37.
    de Oliveira TC, Rodrigues PT, Menezes MJ et al (2017) Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl Trop Dis 11:e0005824CrossRefGoogle Scholar
  38. 38.
    Winter DJ, Pacheco MA, Vallejo AF et al (2015) Whole genome sequencing of field isolates reveals extensive genetic diversity in Plasmodium vivax from Colombia. PLoS Negl Trop Dis 9:e0004252CrossRefGoogle Scholar
  39. 39.
    Anderson TJ, Haubold B, Williams JT et al (2000) Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17:1467–1482CrossRefGoogle Scholar
  40. 40.
    Griffing SM, Mixson-Hayden T, Sridaran S et al (2011) South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids. PLoS One 6:e23486CrossRefGoogle Scholar
  41. 41.
    Machado RL, Povoa MM, Calvosa VS et al (2004) Genetic structure of Plasmodium falciparum populations in the Brazilian Amazon region. J Infect Dis 190:1547–1555CrossRefGoogle Scholar
  42. 42.
    Hupalo DN, Luo Z, Melnikov A et al (2016) Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat Genet 48:953–958CrossRefGoogle Scholar
  43. 43.
    Pearson RD, Amato R, Auburn S et al (2016) Genomic analysis of local variation and recent evolution in Plasmodium vivax. Nat Genet 48:959–964CrossRefGoogle Scholar
  44. 44.
    Alves FP, Durlacher RR, Menezes MJ et al (2002) High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. Am J Trop Med Hyg 66:641–648CrossRefGoogle Scholar
  45. 45.
    Barbosa S, Gozze AB, Lima NF et al (2014) Epidemiology of disappearing Plasmodium vivax malaria: a case study in rural Amazonia. PLoS Negl Trop Dis 8:e3109CrossRefGoogle Scholar
  46. 46.
    da Silva-Nunes M, Codeco CT, Malafronte RS et al (2008) Malaria on the Amazonian frontier: transmission dynamics, risk factors, spatial distribution, and prospects for control. Am J Trop Med Hyg 79:624–635CrossRefGoogle Scholar
  47. 47.
    Ladeia-Andrade S, Ferreira MU, Carvalho ME (2009) Age-dependent acquisition of protective immunity to malaria in riverine populations of the Amazon Basin of Brazil. Am J Trop Med Hyg 80:452–459CrossRefGoogle Scholar
  48. 48.
    Roshanravan B, Kari E, Gilman RH et al (2003) Endemic malaria in the Peruvian Amazon region of Iquitos. Am J Trop Med Hyg 69:45–52CrossRefGoogle Scholar
  49. 49.
    Okell LC, Bousema T, Griffin JT et al (2012) Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun 3:1237CrossRefGoogle Scholar
  50. 50.
    Maltha J, Gillet P, Jacobs J (2013) Malaria rapid diagnostic tests in travel medicine. Clin Microbiol Infect 19:408–415CrossRefGoogle Scholar
  51. 51.
    Gamboa D, Ho MF, Bendezu J et al (2010) A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One 5:e8091CrossRefGoogle Scholar
  52. 52.
    Rachid Viana GM, Akinyi Okoth S, Silva-Flannery L et al (2017) Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia. PLoS One 12:e0171150CrossRefGoogle Scholar
  53. 53.
    Douine M, Musset L, Corlin F et al (2016) Prevalence of Plasmodium spp. in illegal gold miners in French Guiana in 2015: a hidden but critical malaria reservoir. Malar J 15:315CrossRefGoogle Scholar
  54. 54.
    Alves FP, Gil LH, Marrelli MT et al (2005) Asymptomatic carriers of Plasmodium spp. as infection source for malaria vector mosquitoes in the Brazilian Amazon. J Med Entomol 42:777–779CrossRefGoogle Scholar
  55. 55.
    Moonen B, Cohen JM, Snow RW et al (2010) Operational strategies to achieve and maintain malaria elimination. Lancet 376:1592–1603CrossRefGoogle Scholar
  56. 56.
    Fontoura PS, Finco BF, Lima NF et al (2016) Reactive case detection for Plasmodium vivax malaria elimination in rural Amazonia. PLoS Negl Trop Dis 10:e0005221CrossRefGoogle Scholar
  57. 57.
    Wootton JC, Feng X, Ferdig MT et al (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:320–323CrossRefGoogle Scholar
  58. 58.
    Cortese JF, Caraballo A, Contreras CE (2002) Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis 186:999–1006CrossRefGoogle Scholar
  59. 59.
    Ladeia-Andrade S, de Melo GN, de Souza-Lima Rde C et al (2016) No clinical or molecular evidence of Plasmodium falciparum resistance to artesunate-mefloquine in northwestern Brazil. Am J Trop Med Hyg 95:148–154CrossRefGoogle Scholar
  60. 60.
    Montenegro M, Neal AT, Posada M et al (2017) K13-propeller alleles, mdr1 polymorphism, and drug effectiveness at day 3 after artemether-lumefantrine treatment for Plasmodium falciparum malaria in Colombia, 2014-2015. Antimicrob Agents Chemother 61:e01036–e01017CrossRefGoogle Scholar
  61. 61.
    Raccurt CP, Brasseur P, Ciceron M et al (2017) In vivo study of Plasmodium falciparum chloroquine susceptibility in three departments of Haiti. Malar J 16:313CrossRefGoogle Scholar
  62. 62.
    Goncalves LA, Cravo P, Ferreira MU (2014) Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem Inst Oswaldo Cruz 109:534–539CrossRefGoogle Scholar
  63. 63.
    Phillips EJ, Keystone JS, Kain KC (1996) Failure of combined chloroquine and high-dose primaquine therapy for Plasmodium vivax malaria acquired in Guyana, South America. Clin Infect Dis 23:1171–1173CrossRefGoogle Scholar
  64. 64.
    Ruebush TK, Zegarra J, Cairo J et al (2003) Chloroquine-resistant Plasmodium vivax malaria in Peru. Am J Trop Med Hyg 69:548–552CrossRefGoogle Scholar
  65. 65.
    de Santana Filho FS, Arcanjo AR, Chehuan YM et al (2007) Chloroquine-resistant Plasmodium vivax, Brazilian Amazon. Emerg Infect Dis 13:1125–1126CrossRefGoogle Scholar
  66. 66.
    Marques MM, Costa MR, Santana Filho FS et al (2014) Plasmodium vivax chloroquine resistance and anemia in the western Brazilian Amazon. Antimicrob Agents Chemother 58:342–347CrossRefGoogle Scholar
  67. 67.
    Anez A, Moscoso M, Laguna A et al (2015) Resistance of infection by Plasmodium vivax to chloroquine in Bolivia. Malar J 14:261CrossRefGoogle Scholar
  68. 68.
    Marcsisin SR, Reichard G, Pybus BS (2016) Primaquine pharmacology in the context of CYP 2D6 pharmacogenomics: current state of the art. Pharmacol Ther 161:1–10CrossRefGoogle Scholar
  69. 69.
    Nayar JK, Baker RH, Knight JW et al (1997) Studies on a primaquine-tolerant strain of Plasmodium vivax from Brazil in Aotus and Saimiri monkeys. J Parasitol 83:739–745CrossRefGoogle Scholar
  70. 70.
    Conn JE, Quiñones ML, Póvoa MM (2013) Phylogeography, vectors and transmission in Latin America. In: Manguin S (ed) Anopheles mosquitoes—new insights into malaria vectors. InTech, London, pp 145–172Google Scholar
  71. 71.
    Pimenta PF, Orfano AS, Bahia AC et al (2015) An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 110:23–47CrossRefGoogle Scholar
  72. 72.
    Sinka ME, Rubio-Palis Y, Manguin S et al (2010) The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors 3:72CrossRefGoogle Scholar
  73. 73.
    Sinka ME (2013) Global distribution of the dominant vector species of malaria. In: Manguin S (ed) Anopheles mosquitoes - new insights into malaria vectors. InTech, London, pp 109–143Google Scholar
  74. 74.
    Bhatt S, Weiss DJ, Cameron E et al (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526:207–211CrossRefGoogle Scholar
  75. 75.
    PAHO, WHO (1966) Report on the Status of Malaria Eradication in the Americas. XIV Report. Pan American Health Organization, World Health Organization, Washington, D.C.Google Scholar
  76. 76.
    Durnez L, Coosemans M (2013) Residual transmission of malaria: an old issue for new approaches. In: Manguin S (ed) Anopheles mosquitoes—new insights into malaria vectors. InTech, London, pp 671–704Google Scholar
  77. 77.
    Cohen JM, Smith DL, Cotter C et al (2012) Malaria resurgence: a systematic review and assessment of its causes. Malar J 11:122CrossRefGoogle Scholar
  78. 78.
    Smith DL, Cohen JM, Chiyaka C et al (2013) A sticky situation: the unexpected stability of malaria elimination. Philos Trans R Soc Lond B Biol Sci 368:20120145CrossRefGoogle Scholar
  79. 79.
    Castro MC (2017) Malaria transmission and prospects for malaria eradication: the role of the environment. Cold Spring Harb Perspect Med 7:a025601CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
  2. 2.Department of Global Health and PopulationHarvard T.H. Chan School of Public HealthBostonUSA

Personalised recommendations