Advertisement

Current Malaria Situation in Asia-Oceania

  • Chansuda Wongsrichanalai
  • Rossitza Kurdova-Mintcheva
  • Kevin Palmer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2013)

Abstract

Asia-Oceania is a diverse region that comprises roughly 65% of the global population at risk for malaria. In 2016 WHO estimated the number of malaria cases across the Asia-Oceania to be 17 million, which is only a small part (8%) of the total global malaria burden, and the number of cases is shrinking rapidly. Most countries have brought their cases down to the point where elimination is in sight. Plasmodium vivax (P. vivax) is becoming the dominant malaria species in many of those countries, where malaria occurs in hot spots of transmission frequently along international borders. The challenge is now to concentrate on those areas. This chapter reviews the situation in various areas of the Region and focuses on a number of important issues, including the prevalence of P. vivax and drug-resistant malaria.

Key words

Malaria South West Asia South East Asian Region Western Pacific Region Elimination Plasmodium vivax Resistance 

Notes

Acknowledgments

The following individuals have contributed to this manuscript: Ghasem Zamani, Mohammad Sami Nahzat, Mya S. Ngon, Preecha Prempree, Dysoley Lek, and Akira Kaneko. We are also grateful to the Bureau of Vector Borne Disease Control, Department of Disease Control, Thai Ministry of Public Health, for their support.

Supplementary material

442603_1_En_3_MOESM1_ESM.docx (777 kb)
File 1 (DOCX 777 kb)
442603_1_En_3_MOESM2_ESM.docx (1.3 mb)
File 2 (DOCX 1303 kb)
442603_1_En_3_MOESM3_ESM.docx (1.5 mb)
File 3 (DOCX 1520 kb)

References

  1. 1.
    Newby G, Bennett A, Larson E et al (2016) The path to eradication: a progress report on the malaria-eliminating countries. Lancet 387:1775–1784CrossRefGoogle Scholar
  2. 2.
    World Health Organization (2015) Global Technical Strategy for Malaria 2016–2030. World Health Organization, GenevaGoogle Scholar
  3. 3.
    World Health Organization Regional Office for the Eastern Mediterranean (2017) Regional Malaria Action Plan 2016–2020—Towards a Malaria-Free Region. WHO Regional Office for the Eastern Mediterranean, CairoGoogle Scholar
  4. 4.
    World Health Organization South-East Asia Regional Office (2017) Regional Action Plan 2017-2013. World Health Organization, New DelhiGoogle Scholar
  5. 5.
    World Health Organization (2015) World Malaria Report 2015. World Health Organization, GenevaCrossRefGoogle Scholar
  6. 6.
    World Health Organization (2017) World Malaria Report 2017. World Health Organization, GenevaCrossRefGoogle Scholar
  7. 7.
    World Health Organization Regional Office for the Western Pacific (2017) Regional Framework for Malaria Control and Elimination in the Western Pacific (2016-2020). World Health Organization, Manila, PhilippinesGoogle Scholar
  8. 8.
    World Health Organization (2016) World Malaria Report 2016. World Health Organization, GenevaCrossRefGoogle Scholar
  9. 9.
    Department of Disease Control Ministry of Public Health Thailand. Thailand Malaria Elimination Program; online statistics. http://203.157.41.215/malariaR10/index_newversion.php
  10. 10.
    Singh B, Kim Sung L, Matusop A et al (2004) A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363:1017–1024CrossRefGoogle Scholar
  11. 11.
    Singh B, Daneshvar C (2013) Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev 26:165–184CrossRefGoogle Scholar
  12. 12.
    Barber BE, Grigg MJ, William T et al (2017) The treatment of Plasmodium knowlesi malaria. Trends Parasitol 33:242–253CrossRefGoogle Scholar
  13. 13.
    Price RN, von Seidlein L, Valecha N et al (2014) Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis 14:982–991CrossRefGoogle Scholar
  14. 14.
    Leang R, Barrette A, Bouth DM et al (2013) Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob Agents Chemother 57:818–826CrossRefGoogle Scholar
  15. 15.
    Leang R, Ros S, Duong S et al (2013) Therapeutic efficacy of fixed dose artesunate-mefloquine for the treatment of acute, uncomplicated Plasmodium falciparum malaria in Kampong Speu, Cambodia. Malar J 12:343CrossRefGoogle Scholar
  16. 16.
    Moiz B (2013) A review of G6PD deficiency in Pakistani perspective. J Pak Med Assoc 63(4):501–503PubMedGoogle Scholar
  17. 17.
    Surjadjaja C, Surya A, Baird JK (2016) Epidemiology of Plasmodium vivax in Indonesia. Am J Trop Med Hyg 95:121–132CrossRefGoogle Scholar
  18. 18.
    Adeel AA, Saeed NA, Aljasari A et al (2015) High efficacy of two artemisinin-based combinations: artesunate + sulfadoxine-pyrimethamine and artemether-lumefantrine for falciparum malaria in Yemen. Malar J 14:449CrossRefGoogle Scholar
  19. 19.
    Ministry of Health and Welfare India (2013) Diagnosis and treatment of malaria Directorate of National Vector Borne Disease Control Programme (NVBDCP). Directorate General Health ServicesGoogle Scholar
  20. 20.
    Mishra N, Kaitholia K, Srivastava B et al (2014) Declining efficacy of artesunate plus sulphadoxine-pyrimethamine in northeastern India. Malar J 13:284CrossRefGoogle Scholar
  21. 21.
    Wongsrichanalai C, Pickard AL, Wernsdorfer WH et al (2002) Epidemiology of drug-resistant malaria. Lancet Infect Dis 2:209–218CrossRefGoogle Scholar
  22. 22.
    Vijaykadga S, Rojanawatsirivej C, Cholpol S et al (2006) In vivo sensitivity monitoring of mefloquine monotherapy and artesunate-mefloquine combinations for the treatment of uncomplicated falciparum malaria in Thailand in 2003. Tropical Med Int Health 11:211–219CrossRefGoogle Scholar
  23. 23.
    Ariey F, Witkowski B, Amaratunga C et al (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55CrossRefGoogle Scholar
  24. 24.
    World Health Organization Global Malaria Programme (2018) Artemisinin resistance and artemisinin-based combination therapy efficacy. Status report. Geneva. https://apps.who.int/iris/bitstream/handle/10665/274362/WHO-CDS-GMP-2018.18-eng.pdf?ua=1
  25. 25.
    Amaratunga C, Lim P, Suon S et al (2016) Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis 16:357–365CrossRefGoogle Scholar
  26. 26.
    Duru V, Witkowski B, Menard D (2016) Plasmodium falciparum resistance to artemisinin derivatives and piperaquine: A major challenge for malaria elimination in Cambodia. Am J Trop Med Hyg 95:1228–1238CrossRefGoogle Scholar
  27. 27.
    Thanh NV, Thuy-Nhien N, Tuyen NT et al (2017) Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam. Malar J 16:27CrossRefGoogle Scholar
  28. 28.
    Menard D, Khim N, Beghain J et al (2016) A worldwide map of Plasmodium falciparum K13-Propeller polymorphisms. N Engl J Med 374:2453–2464CrossRefGoogle Scholar
  29. 29.
    Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM et al (2015) Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis 211(5):670–679.  https://doi.org/10.1093/infdis/jiu491CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chansuda Wongsrichanalai
    • 1
  • Rossitza Kurdova-Mintcheva
    • 2
  • Kevin Palmer
    • 3
  1. 1.Independent ScholarBangkokThailand
  2. 2.Independent ScholarSofiaBulgaria
  3. 3.Department of Tropical Medicine and PharmacologyJohn A. Burns School of MedicineHonoluluUSA

Personalised recommendations