Sampling Adult Populations of Anopheles Mosquitoes

  • Julie-Anne A. Tangena
  • Alexandra Hiscox
  • Paul T. BreyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2013)


For the control and elimination of malaria, information on the local vector dynamics is essential. This information provides guidance on appropriate and timely deployment of vector control tools and their subsequent success. The data on the dynamics of local mosquito populations can be collected using many different Anopheles sampling methods. Dependent on the objectives, resources, time, and local environment, different traps and methods can be chosen. This chapter describes the sampling of adult populations, focusing on the important preparatory stages and some of the widely used sampling methods. The trapping methods discussed in this chapter are the human landing catch, human-baited net trap, animal landing catch, animal-baited net trap, CDC miniature light trap, Biogents Suna trap, peripheral net collection, pyrethrum collection, exit/entry trap, and resting shelter. For optimal deployment in the field, a step-by-step description of the sampling methods is given.

Key words

Anopheles Mosquito traps Human landing catch Human-baited net trap Animal landing catch Animal-baited net trap CDC miniature light trap Biogents Suna trap Peripheral net collection Pyrethrum collection Exit-entry trap Resting shelter 



This work was supported by the Yersin project, funded by the Michelin Corporate Foundation. AH was supported by a grant from the Innovative Vector Control Consortium.


  1. 1.
    Smith DL, Dushoff J, Snow RW et al (2005) The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438:492–495CrossRefGoogle Scholar
  2. 2.
    Hay SI, Smith DL, Snow RW (2008) Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis 8:369–378CrossRefGoogle Scholar
  3. 3.
    Smith T, Killeen G, Lengeler C et al (2004) Relationships between the outcome of Plasmodium falciparum infection and the intensity of transmission in Africa. Am J Trop Med Hyg 71:80–86CrossRefGoogle Scholar
  4. 4.
    Killeen GF, Ross A, Smith T (2006) Infectiousness of malaria-endemic human populations to vectors. Am J Trop Med Hyg 75:38–45CrossRefGoogle Scholar
  5. 5.
    Reddy M, Overgaard H, Abaga S et al (2011) Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J 10:184CrossRefGoogle Scholar
  6. 6.
    Russell TL, Beebe NW, Cooper RD et al (2013) Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J 12:56CrossRefGoogle Scholar
  7. 7.
    Moiroux N, Gomez MB, Pennetier C et al (2012) Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 206:1622–1629CrossRefGoogle Scholar
  8. 8.
    Sougoufara S, Diédhiou SM, Doucouré S et al (2014) Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J 13:125CrossRefGoogle Scholar
  9. 9.
    Dabiré RK, Namountougou M, Sawadogo SP et al (2012) Population dynamics of Anopheles gambiae s.L. in Bobo-Dioulasso city: bionomics, infection rate and susceptibility to insecticides. Parasit Vectors 5:127CrossRefGoogle Scholar
  10. 10.
    Lwetoijera DW, Harris C, Kiware SS et al (2014) Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J 13:331CrossRefGoogle Scholar
  11. 11.
    Githeko A, Adungo N, Karanja D et al (1996) Some observations on the biting behavior of Anopheles gambiae s.S., Anopheles arabiensis, and Anopheles funestus and their implications for malaria control. Exp Parasitol 82:306–315CrossRefGoogle Scholar
  12. 12.
    Gryseels C, Durnez L, Gerrets R et al (2015) Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia. Malar J 14:165CrossRefGoogle Scholar
  13. 13.
    Killeen G (2014) Characterizing, controlling and eliminating residual malaria transmission. Malar J 13:330CrossRefGoogle Scholar
  14. 14.
    Ng’habi KR (2010) Behavioural, ecological and genetic determinants of mating and gene flow in Africa malaria mosquitoes. PhD Thesis, Wageningen UniversityGoogle Scholar
  15. 15.
    Ndiath MO, Mazenot C, Gaye A et al (2011) Methods to collect Anopheles mosquitoes and evaluate malaria transmission: a comparative study in two villages in Senegal. Malar J 10:270CrossRefGoogle Scholar
  16. 16.
    Molineaux L, Gramiccia G (1980) The Garki project: research on the epidemiology and control of malaria in the Sudan savanna of West Africa. World Health Organization, GenevaGoogle Scholar
  17. 17.
    Fontenille D, Lochouarn L, Diagne N et al (1997) High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 56:247–253CrossRefGoogle Scholar
  18. 18.
    Fontenille D, Lochouarn L, Diatta M et al (1997) Four years’ entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and A. arabiensis. Trans R Soc Trop Med Hyg 91:647–652CrossRefGoogle Scholar
  19. 19.
    Watson M (1921) The prevention of malaria in the federated Malay states, a record of 20 years progress. E.P. Dutton and company, New YorkGoogle Scholar
  20. 20.
    Gater BAR (1935) Aids to the identification of anopheline imagines in Malaya. Goverment of the Straits Settlement and the Malaria Advisory Board, Federated Malay states, SingaporeGoogle Scholar
  21. 21.
    Zwiebel LJ, Takken W (2004) Olfactory regulation of mosquito–host interactions. Insect Biochem Mol Biol 34:645–652CrossRefGoogle Scholar
  22. 22.
    Gimnig JE, Walker ED, Otieno P et al (2013) Incidence of malaria among mosquito collectors conducting human landing catches in western Kenya. Am J Trop Med Hyg 88:301–308CrossRefGoogle Scholar
  23. 23.
    Chen H-L, Chang J-K, Tang R-B (2015) Current recommendations for the Japanese encephalitis vaccine. J Chin Med Assoc 78:271–275CrossRefGoogle Scholar
  24. 24.
    Imwong M, Hien TT, Thuy-Nhien NT et al (2017) Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam. Lancet Infect Dis 17:1022–1023CrossRefGoogle Scholar
  25. 25.
    Ashley EA, Dhorda M, Fairhurst RM et al (2014) Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411–423CrossRefGoogle Scholar
  26. 26.
    Le Goff G, Carnevale P, Fondjo E et al (1997) Comparison of three sampling methods of man-biting anophelines in order to estimate the malaria transmission in a village of South Cameroon. Parasite 4:75–80CrossRefGoogle Scholar
  27. 27.
    Seng CM, Matusop A, Sen FK (1999) Differences in Anopheles composition and malaria transmission in the village settlements and cultivated farming zone in Sarawak, Malaysia. Southeast Asian J Trop Med Public Health 30:454–459PubMedGoogle Scholar
  28. 28.
    Rubio-Palis Y, Curtis CF (1992) Evaluation of different methods of catching anopheline mosquitoes in western Venezuela. J Am Mosq Control Assoc 8:261–267PubMedGoogle Scholar
  29. 29.
    Service MW (1977) A critical review of procedures for sampling populations of adult mosquitoes. Bull Entomol Res 67:343–382CrossRefGoogle Scholar
  30. 30.
    World Health Organization (1975) Methods and techniques. Manual on practical entomology in malaria. WHO, GenevaGoogle Scholar
  31. 31.
    Hamon J (1964) Observations sur l’emploi des moustiquaires-pieges pour la capture semi-automatique des moustiques. Bull Soc Pathol Exot 57:576–588Google Scholar
  32. 32.
    Tangena J-AA, Thammavong P, Hiscox A et al (2015) The human-baited double net trap: an alternative to human landing catches for collecting outdoor biting mosquitoes in Lao PDR. PLoS One 10:e0138735CrossRefGoogle Scholar
  33. 33.
    Chaki PP, Mlacha YP, Msellem D et al (2012) An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns. Malar J 11:172CrossRefGoogle Scholar
  34. 34.
    Singh N, Mishra AK (1997) Efficacy of light-traps in sampling malaria vectors in different ecological zones in Central India. Southeast Asian J Trop Med Public Health 28:196–202PubMedGoogle Scholar
  35. 35.
    Kilama M, Smith DL, Hutchinson R et al (2014) Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar J 13:111CrossRefGoogle Scholar
  36. 36.
    Lines JD, Curtis CF, Wilkes TJ et al (1991) Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bull Entomol Res 81:77–84CrossRefGoogle Scholar
  37. 37.
    McDermott EG, Mullens BA (2017) The dark side of light traps. J Med Entomol 55:251–261CrossRefGoogle Scholar
  38. 38.
    Hiscox A, Otieno B, Kibet A et al (2014) Development and optimization of the Suna trap as a tool for mosquito monitoring and control. Malar J 13:257CrossRefGoogle Scholar
  39. 39.
    Homan T, Hiscox A, Mweresa CK et al (2016) The effect of mass mosquito trapping on malaria transmission and disease burden (SolarMal): a stepped-wedge cluster-randomised trial. Lancet 388:1193–1201CrossRefGoogle Scholar
  40. 40.
    Hiscox A, Maire N, Kiche I et al (2012) The SolarMal project: innovative mosquito trapping technology for malaria control. Malar J 11:O45CrossRefGoogle Scholar
  41. 41.
    Burkot TR, Russell TL, Reimer LJ et al (2013) Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J 12:49CrossRefGoogle Scholar
  42. 42.
    Marcombe S, Bobichon J, Somphong B et al (2017) Insecticide resistance status of malaria vectors in Lao PDR. PLoS One 12:e0175984CrossRefGoogle Scholar
  43. 43.
    World Health Organization (2013) Malaria entomology and vector control. Guide for participants. WHO, GenevaGoogle Scholar
  44. 44.
    Harbison JE, Mathenge EM, Misiani GO et al (2006) A simple method for sampling indoor-resting malaria mosquitoes Anopheles gambiae and Anopheles funestus (Diptera: Culicidae) in Africa. J Med Entomol 43:473–479CrossRefGoogle Scholar
  45. 45.
    Govella NJ, Chaki PP, Mpangile JM et al (2011) Monitoring mosquitoes in urban Dar Es Salaam: evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches. Parasit Vectors 4:40CrossRefGoogle Scholar
  46. 46.
    Silver JB (2008) Field sampling methods. Mosquito ecology, 3rd edn. Springer, DordrechtCrossRefGoogle Scholar
  47. 47.
    Muirhead-Thomson RC (1958) A pit shelter for sampling outdoor mosquito populations. Bull World Health Organ 19:1116–1118PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kweka EJ, Mwang’onde BJ, Kimaro E et al (2009) A resting box for outdoor sampling of adult Anopheles arabiensis in rice irrigation schemes of lower Moshi, northern Tanzania. Malar J 8:82CrossRefGoogle Scholar
  49. 49.
    Service MW (1993) Mosquito ecology. Field sampling methods. Elsevier Applied Science, LondonCrossRefGoogle Scholar
  50. 50.
    Odiere M, Bayoh MN, Gimnig J et al (2007) Sampling outdoor, resting Anopheles gambiae and other mosquitoes (Diptera: Culicidae) in Western Kenya with clay pots. J Med Entomol 44:14–22CrossRefGoogle Scholar
  51. 51.
    Sikaala CH, Killeen GF, Chanda J et al (2013) Evaluation of alternative mosquito sampling methods for malaria vectors in lowland south - East Zambia. Parasit Vectors 6:91CrossRefGoogle Scholar
  52. 52.
    Rosner B (2010) Chapter 8 hypothesis testing: two-sample inference. In: Fundamentals for biostatistics. 7th ednGoogle Scholar
  53. 53.
    Detinova TS (1945) Determination of the physiological age of female Anopheles from the changes of the tracheal system of the ovaries. Med Parazitol (Mosk) 14:45–49Google Scholar
  54. 54.
    World Health Organization (2016) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, 2nd edn. The WHO susceptibility test for adult mosquitoes, GenevaGoogle Scholar
  55. 55.
    Cooper RD, Frances SP, Popat S et al (2004) The effectiveness of light, 1-octen-3-ol, and carbon dioxide as attractants for anopheline mosquitoes in Madang Province, Papua New Guinea. J Am Mosq Control Assoc 20:239–242PubMedGoogle Scholar
  56. 56.
    Barr AR, Smith TA, Boreham MM et al (1963) Evaluation of some factors affecting the efficiency of light traps in collecting mosquitoes. J Econ Entomol 56:123–127CrossRefGoogle Scholar
  57. 57.
    Gillies MT (1970) The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull Ent Res 70:525–532CrossRefGoogle Scholar
  58. 58.
    Smallegange RC, Schmied WH, van Roey KJ et al (2010) Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J 9:292CrossRefGoogle Scholar
  59. 59.
    Mweresa C, Omusula P, Otieno B et al (2014) Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus. Malar J 13:160CrossRefGoogle Scholar
  60. 60.
    van Loon JJA, Smallegange RC, Bukovinszkiné-Kiss G et al (2015) Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol 41:567–573CrossRefGoogle Scholar
  61. 61.
    Mburu MM, Mweresa CK, Omusula P et al (2017) 2-butanone as a carbon dioxide mimic in attractant blends for the Afrotropical malaria mosquitoes Anopheles gambiae and Anopheles funestus. Malar J 16:351CrossRefGoogle Scholar
  62. 62.
    Smallegange RC, Knols BG, Takken W (2010) Effectiveness of synthetic versus natural human volatiles as attractants for Anopheles gambiae (Diptera: Culicidae) sensu stricto. J Med Entomol 47:338–344PubMedGoogle Scholar
  63. 63.
    Schmied WH, Takken W, Killeen GF et al (2008) Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.S. Under semi-field conditions in Tanzania. Malar J 7:230CrossRefGoogle Scholar
  64. 64.
    Njiru BN, Mukabana WR, Takken W et al (2006) Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J 5:39CrossRefGoogle Scholar
  65. 65.
    Logan JG, Birkett MA (2007) Semiochemicals for biting fly control: their identification and exploitation. Pest Manag Sci 63:647–657CrossRefGoogle Scholar
  66. 66.
    Acree F, Turner RB, Gouck HK et al (1968) L-lactic acid: a mosquito attractant isolated from humans. Science 161:1346–1347CrossRefGoogle Scholar
  67. 67.
    Braks MAH, Meijerink J, Takken W (2001) The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and l-lactic acid, in an olfactometer. Physiol Entomol 26:142–148CrossRefGoogle Scholar
  68. 68.
    Okumu FO, Killeen GF, Ogoma S et al (2010) Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS One 5:e8951CrossRefGoogle Scholar
  69. 69.
    Mukabana WR, Mweresa CK, Otieno B et al (2012) A novel synthetic odorant blend for trapping of malaria and other African mosquito species. J Chem Ecol 38:235–244CrossRefGoogle Scholar
  70. 70.
    Odetoyinbo JA (1969) Preliminary investigation on the use of a light-trap for sampling malaria vectors in the Gambia. Bull World Health Organ 40:547–560PubMedPubMedCentralGoogle Scholar
  71. 71.
    Mboera LE, Kihonda J, Braks MA et al (1998) Influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg 59:595–596CrossRefGoogle Scholar
  72. 72.
    Verhulst NO, Bakker JW, Hiscox A (2015) Modification of the suna trap for improved survival and quality of mosquitoes in support of epidemiological studies. J Am Mosq Control Assoc 31:223–232CrossRefGoogle Scholar
  73. 73.
    Williams J, Pinto J (2012) Training manual on malaria entomology, for entomology and vector control technicians (basic level). United States Agency for International Development, Washington, DCGoogle Scholar
  74. 74.
    Microsoft (2015) Project premonition Accessed 22 Dec 2017
  75. 75.
    Biogents (2016) BG-counter: remote mosquito monitoring. Accessed 24 Dec 2017
  76. 76.
    Menger D, Otieno B, de Rijk M et al (2014) A push-pull system to reduce house entry of malaria mosquitoes. Malar J 13:119CrossRefGoogle Scholar
  77. 77.
    Kydonieus AF, Beroza M (1982) Insect suppression with controlled release pheromone systems, vol 1. Pheromones and their use. RC Press, Boca Raton, FLGoogle Scholar
  78. 78.
    Poulin B, Lefebvre G, Muranyi-Kovacs C et al (2017) Mosquito traps: an innovative, environmentally friendly technique to control mosquitoes. Int J Environ Res Public Health 14:313CrossRefGoogle Scholar
  79. 79.
    Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400CrossRefGoogle Scholar
  80. 80.
    Tangena J-AA, Thammavong P, Malaithong N et al (2017) Diversity of mosquitoes (Diptera: Culicidae) attracted to human subjects in rubber plantations, secondary forests, and villages in Luang Prabang province, northern Lao PDR. J Med Entomol 54:1589–1604CrossRefGoogle Scholar
  81. 81.
    Pombi M, Guelbeogo WM, Kreppel K et al (2014) The sticky resting box, a new tool for studying resting behaviour of Afrotropical malaria vectors. Parasit Vectors 7:247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Julie-Anne A. Tangena
    • 1
  • Alexandra Hiscox
    • 2
    • 3
  • Paul T. Brey
    • 1
    Email author
  1. 1.Medical Entomology and Vector-Borne Disease LaboratoryInstitut Pasteur du LaosVientianeLaos
  2. 2.Laboratory of EntomologyWageningen University and ResearchWageningenNetherlands
  3. 3.International Centre of Insect Physiology and EcologyNairobiKenya

Personalised recommendations