Skip to main content

Conditional Mutation of SMC5 in Mouse Embryonic Fibroblasts

  • Protocol
  • First Online:
SMC Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2004))

Abstract

The structural maintenance of chromosomes (SMC) complex, SMC5/6, is important for genome maintenance in all model eukaryotes. To date, the most extensive studies have focused on the roles of Smc5/6 in lower eukaryotes, such as yeast and fly. In the handful of studies that have used mammalian cells, siRNA was used by most to knockdown SMC5/6 components. RNAi methods have been very important for scientific progression, but they are hindered by incomplete silencing of protein expression and off-target effects. This chapter outlines the use of a conditional knockout approach in mouse embryonic fibroblasts to study the function of the SMC5/6 complex. These cell lines provide an alternative method to study the function and properties of the SMC5/6 complex in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray JM, Carr AM (2008) Smc5/6: a link between DNA repair and unidirectional replication? Nat Rev Mol Cell Biol 9:177–182. https://doi.org/10.1038/nrm2309

    Article  CAS  PubMed  Google Scholar 

  2. Uhlmann F (2016) SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol 17:399–412. https://doi.org/10.1038/nrm.2016.30

    Article  CAS  PubMed  Google Scholar 

  3. Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7:311–322. https://doi.org/10.1038/nrm1909

    Article  CAS  PubMed  Google Scholar 

  4. Piccoli G, Torres-Rosell J, Aragón L (2009) The unnamed complex: what do we know about Smc5-Smc6? Chromosome Res 17:251–263

    Article  Google Scholar 

  5. Verver DE, Hwang GH, Jordan PW, Hamer G (2016) Resolving complex chromosome structures during meiosis: versatile deployment of Smc5/6. Chromosoma 125:15–27. https://doi.org/10.1007/s00412-015-0518-9

    Article  CAS  PubMed  Google Scholar 

  6. Hirano T (2016) Condensin-based chromosome organization from bacteria to vertebrates. Cell 164:847–857. https://doi.org/10.1016/j.cell.2016.01.033

    Article  CAS  PubMed  Google Scholar 

  7. Wu N, Yu H (2012) The Smc complexes in DNA damage response. Cell Biosci 2:5. https://doi.org/10.1186/2045-3701-2-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Piccoli G, Cortes-Ledesma F, Ira G, Torres-Rosell J, Uhle S et al (2006) Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat Cell Biol 8:1032–1034. https://doi.org/10.1038/ncb1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Irmisch A, Ampatzidou E, Mizuno K, O’Connell MJ, Murray JM (2009) Smc5/6 maintains stalled replication forks in a recombination-competent conformation. EMBO J 28:144–155. https://doi.org/10.1038/emboj.2008.273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N et al (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9:923–931. https://doi.org/10.1038/ncb1619

    Article  CAS  PubMed  Google Scholar 

  11. Wu N, Kong X, Ji Z, Zeng W, Potts PR et al (2012) Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes Dev 26:1473–1485. https://doi.org/10.1101/gad.193615.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342. https://doi.org/10.1038/nature10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pryzhkova MV, Jordan PW (2016) Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. J Cell Sci 129:1619–1634. https://doi.org/10.1242/jcs.179036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hwang G, Sun F, O’Brien M, Eppig JJ, Handel MA et al (2017) SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development 144:1648–1660. https://doi.org/10.1242/dev.145607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313. https://doi.org/10.1083/jcb.17.2.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herbert AD, Carr AM, Hoffmann E (2014) FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis. PLoS One 9:e114749. https://doi.org/10.1371/journal.pone.0114749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M et al (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841. https://doi.org/10.1101/gad.12.18.2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) grant K99/R00 HD069458 to P.W.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Jordan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gaddipati, H., Pryzhkova, M.V., Jordan, P.W. (2019). Conditional Mutation of SMC5 in Mouse Embryonic Fibroblasts. In: Badrinarayanan, A. (eds) SMC Complexes. Methods in Molecular Biology, vol 2004. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9520-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9520-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9519-6

  • Online ISBN: 978-1-4939-9520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics