Conjugation of Triphenylphosphonium Cation to Hydrophobic Moieties to Prepare Mitochondria-Targeting Nanocarriers

  • Diana Guzman-Villanueva
  • Mark R. Mendiola
  • Huy X. Nguyen
  • Francis Yambao
  • Nusem Yu
  • Volkmar Weissig
Part of the Methods in Molecular Biology book series (MIMB, volume 2000)


The contribution of mitochondrial dysfunctions to diseases such as cancer, diabetes, cardiovascular, and neurodegenerative diseases has made mitochondria an attractive pharmacological target. To deliver biologically active molecules to mitochondria, however, cellular and mitochondrial barriers must be first overcome. The mitochondrial transmembrane electric potential (negative inside) is among the most commonly used strategies to deliver molecules to mitochondria as it allows the accumulation of positively charged molecules. Thus, therapeutic molecules are either covalently conjugated to lipophilic cations like triphenylphosphonium (TPP) or loaded into nanocarriers conjugated to TPP.

Key words

TPP Triphenylphosphonium Mitochondria-targeting Nanocarriers Mitochondrial diseases 


  1. 1.
    Frantz MC, Wipf P (2010) Mitochondria as a target in treatment. Environ Mol Mutagen 51:462–475PubMedPubMedCentralGoogle Scholar
  2. 2.
    Reily C, Mitchell T, Chacko BK et al (2013) Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol 1:86–93CrossRefGoogle Scholar
  3. 3.
    Olszewska A, Szewczyk A (2013) Mitochondria as a pharmacological target: magnum overview. IUBMB Life 65:273–281CrossRefGoogle Scholar
  4. 4.
    Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127CrossRefGoogle Scholar
  5. 5.
    Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464CrossRefGoogle Scholar
  6. 6.
    Malty RH, Jessulat M, Jin K et al (2015) Mitochondrial targets for pharmacological intervention in human disease. Proteome Res 14:5–21CrossRefGoogle Scholar
  7. 7.
    Wongrakpanich A, Geary SM, Joiner MA et al (2014) Mitochondria-targeting particles. Nanomed 9:2531–2543CrossRefGoogle Scholar
  8. 8.
    Agrawal U, Sharma R, Vyas SP (2015) Targeted drug delivery to the mitochondria. In: Devarajan PV, Jain S (eds) Targeted drug delivery: concepts and design. Advances in delivery sciences and technology. SpringerGoogle Scholar
  9. 9.
    Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777:1028–1031CrossRefGoogle Scholar
  10. 10.
    Smith RAJ, Porteous CM, Gane AM et al (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci 100:5407–5412CrossRefGoogle Scholar
  11. 11.
    Liberman EA, Topaly VP, Tsofina LM et al (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222:1076–1078CrossRefGoogle Scholar
  12. 12.
    Murphy MP (2001) Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. Expert Opin Biol Ther 1:753–764CrossRefGoogle Scholar
  13. 13.
    Murphy MP, Smith RAJ (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656CrossRefGoogle Scholar
  14. 14.
    Murphy MP (1997) Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol 15:326–330CrossRefGoogle Scholar
  15. 15.
    Smith RAJ, Hartley RC, Cochemé HM et al (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 3:341–352CrossRefGoogle Scholar
  16. 16.
    Kelso GF, Porteous CM, Hughes G et al (2002) Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann N Y Acad Sci 959:263–274CrossRefGoogle Scholar
  17. 17.
    Zhang XY, Zhang PY (2016) Mitochondria targeting nano agents in cancer therapeutics. Oncol Lett 12:4887–4890CrossRefGoogle Scholar
  18. 18.
    Boddapati SV, Tongcharoensirikul P, Hanson RN et al (2005) Mitochondriotropic liposomes. J Liposome Res 15:49–58CrossRefGoogle Scholar
  19. 19.
    Weissig V (2003) Mitochondrial-targeted drug and DNA delivery. Crit Rev Ther Drug Carrier Syst 20:1–62CrossRefGoogle Scholar
  20. 20.
    Yamada Y, Harashima H (2008) Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev 60:1439–1462CrossRefGoogle Scholar
  21. 21.
    Boddapati SV, D’Souza GGM, Weissig V (2010) Liposomes for drug delivery to mitochondria. Methods Mol Biol 605:295–303CrossRefGoogle Scholar
  22. 22.
    Biswas S, Dodwadkar NS, Piroyan A et al (2012) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 33:4773–4782CrossRefGoogle Scholar
  23. 23.
    Guzman-Villanueva D, Mendiola MR, Nguyen HX et al (2015) Influence of triphenylphosphonium (TPP) cation hydrophobization with phospholipids on cellular toxicity and mitochondrial selectivity. SOJ Pharma Pharm Sci 2:1–9Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Diana Guzman-Villanueva
    • 1
    • 2
  • Mark R. Mendiola
    • 1
  • Huy X. Nguyen
    • 1
  • Francis Yambao
    • 1
  • Nusem Yu
    • 1
  • Volkmar Weissig
    • 1
    • 2
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyMidwestern UniversityGlendaleUSA
  2. 2.Nanomedicine Center of Excellence in Translational Cancer ResearchMidwestern UniversityGlendaleUSA

Personalised recommendations