Functional Analysis of ESCRT-Positive Extracellular Vesicles in the Drosophila Wing Imaginal Disc

  • Tamás Matusek
  • Pascal ThérondEmail author
  • Maximilian FürthauerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1998)


A large number of studies have shown that proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) can trigger the biogenesis of different types of Extracellular Vesicles (EV). The functions that these vesicular carriers exert in vivo remain, however, poorly understood. In this chapter, we describe a series of experimental approaches that we established in the Drosophila wing imaginal disc to study the importance of ESCRT-positive EVs for the extracellular transport of signaling molecules, as exemplified by a functional analysis of the mechanism of secretion and propagation of the major developmental morphogen Hedgehog (Hh).

Through the combined use of genetic, cell biological, and imaging approaches, we investigate four important aspects of exovesicle biology: (1) The genetic identification of ESCRT proteins that are specifically required for Hh secretion. (2) The imaging of ESCRT and Hh-positive EVs in the lumenal space of both living and fixed wing imaginal discs. (3) The receptor-mediated capture of Hh-containing EVs on the surface of Hh-receiving cells. (4) The effect of manipulations of ESCRT function on the extracellular pool of Hh ligands.

Key words

ESCRT Hedgehog Drosophila Extracellular vesicles Exosomes Ectosomes 



This work was supported by the LABEX SIGNALIFE (ANR-11-LABX-0028-01), by the Fondation pour la Recherche Médicale, and by ANR ANR-15-CE13-0002. T. M was supported by the Fondation ARC pour la Recherche Contre le Cancer and Ligue Nationale Contre le Cancer. PT is supported by Ligue Nationale Contre le Cancer “Équipe labellisée”. M.F. was supported by the CNRS/INSERM ATIP/Avenir program, ARC (SFI20111203750), and HFSP (CDA 00036/2010).


  1. 1.
    Henne WM, Stenmark H, Emr SD (2013) Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 5(9):a016766CrossRefGoogle Scholar
  2. 2.
    Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91CrossRefGoogle Scholar
  3. 3.
    Campsteijn C, Vietri M, Stenmark H (2016) Novel ESCRT functions in cell biology: spiraling out of control? Curr Opin Cell Biol 41:1–8CrossRefGoogle Scholar
  4. 4.
    Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289CrossRefGoogle Scholar
  5. 5.
    Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232CrossRefGoogle Scholar
  6. 6.
    Juan T, Fürthauer M (2018) Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol 74:66–77CrossRefGoogle Scholar
  7. 7.
    Briscoe J, Thérond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14(7):416–429CrossRefGoogle Scholar
  8. 8.
    Zeng X, Goetz JA, Suber LM, Scott WJ, Schreiner CM, Robbins DJ (2001) A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411(6838):716–720CrossRefGoogle Scholar
  9. 9.
    Panáková D, Sprong H, Marois E, Thiele C, Eaton S (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435(7038):58–65CrossRefGoogle Scholar
  10. 10.
    Matusek T, Wendler F, Polès S, Pizette S, D’Angelo G, Fürthauer M, Thérond PP (2014) The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516(7529):99–103CrossRefGoogle Scholar
  11. 11.
    Gradilla AC, González E, Seijo I, Andrés G, Bischoff M, González-Mendez L, Sánchez V, Callejo A, Ibáñez C, Guerra M, Ortigão-Farias JR, Sutherland JD, González M, Barrio R, Falcón-Pérez JM, Guerrero I (2014) Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 5:5649CrossRefGoogle Scholar
  12. 12.
    Parchure A, Vyas N, Ferguson C, Parton RG, Mayor S (2015) Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion. Mol Biol Cell 26(25):4700–4717CrossRefGoogle Scholar
  13. 13.
    Vyas N, Walvekar A, Tate D, Lakshmanan V, Bansal D, Lo Cicero A, Raposo G, Palakodeti D, Dhawan J (2014) Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties. Sci Rep 4:7357CrossRefGoogle Scholar
  14. 14.
    Sweeney NT, Brenman JE, Jan YN, Gao FB (2006) The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr Biol 16(10):1006–1011CrossRefGoogle Scholar
  15. 15.
    Torroja C, Gorfinkiel N, Guerrero I (2004) Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development 131(10):2395–2408CrossRefGoogle Scholar
  16. 16.
    Marois E, Mahmoud A, Eaton S (2006) The endocytic pathway and formation of the Wingless morphogen gradient. Development 133(2):307–317CrossRefGoogle Scholar
  17. 17.
    Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, Stenmark H (2007) ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 17(20):1817–1825CrossRefGoogle Scholar
  18. 18.
    Gallet A, Rodriguez R, Ruel L, Therond PP (2003) Cholesterol modification of hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to hedgehog. Dev Cell 4(2):191–204CrossRefGoogle Scholar
  19. 19.
    Hafer N, Schedl P (2006) Dissection of larval CNS in Drosophila melanogaster. J Vis Exp 1:85Google Scholar
  20. 20.
    Ayers KL, Gallet A, Staccini-Lavenant L, Thérond PP (2010) The long-range activity of Hedgehog is regulated in the apical extracellular space by the glypican Dally and the hydrolase Notum. Dev Cell 18(4):605–620CrossRefGoogle Scholar
  21. 21.
    Rodenfels J, Lavrynenko O, Ayciriex S, Sampaio JL, Carvalho M, Shevchenko A, Eaton S (2014) Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development. Genes Dev 28(23):2636–2651CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université Côte d’Azur, CNRS, InsermiBVFrance

Personalised recommendations