Skip to main content

Evaluating the Effect of Drug Compounds on Cardiac Spheroids Using the Cardiac Cell Outgrowth Assay

  • Protocol
  • First Online:
Cell-Based Assays Using iPSCs for Drug Development and Testing

Abstract

The ideal cell culture model should mimic the cell physiology and the mechanical and the chemical cues that are present in specific tissues and organs, within a convenient high-throughput format. A possible key feature for such models is to recapture the cell polarity, the interactions between cells, and the interactions between the cells and the elastic extracellular matrix (ECM) by orienting the cells in a three-dimensional (3D) matrix. A common method to create 3D cell environments is to let the cells aggregate into spheroids with a diameter of around 200 μm. A major challenge for 3D cell cultures is to perform quick and easy imaging of the dense cell population, especially noninvasively. This protocol explains how to take advantage of the number of cells growing out from cell spheroids over time as a readout of the effect of a drug. The assay is compatible with standard imaging techniques and can be performed noninvasively using light microscopy or as a complement to other fluorescent imaging assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

    Article  CAS  Google Scholar 

  2. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14(4):248–260

    Article  CAS  Google Scholar 

  3. Marx U, Andersson TB, Bahinski A et al (2016) Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33(3):272–321

    PubMed  PubMed Central  Google Scholar 

  4. Christoffersson J, van Noort D, Mandenius C-F (2017) Developing organ-on-a-chip concepts using bio-mechatronic design methodology. Biofabrication 9(2):025023

    Article  Google Scholar 

  5. Ma L-D, Wang Y-T, Wang J-R et al (2018) Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip

    Google Scholar 

  6. Ehrlich A, Tsytkin-Kirschenzweig S, Ioannidis K et al (2018) Microphysiological flux balance platform unravels the dynamics of drug induced steatosis. Lab Chip

    Google Scholar 

  7. Jackman CP, Carlson AL, Bursac N (2016) Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials 111:66–79

    Article  CAS  Google Scholar 

  8. Lemoine MD, Mannhardt I, Breckwoldt K et al (2017) Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Sci. Rep 7(1):5464

    Google Scholar 

  9. Wang L, Tao T, Su W et al (2017) A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab Chip 17(10):1749–1760

    Article  CAS  Google Scholar 

  10. DesRochers TM, Suter L, Roth A et al (2013) Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity. PLoS One 8(3):e59219

    Article  CAS  Google Scholar 

  11. Caballero D, Blackburn SM, de Pablo M et al (2017) Tumour-vessel-on-a-chip models for drug delivery. Lab Chip 17(22):3760–3771

    Article  CAS  Google Scholar 

  12. Toh Y-C, Raja A, Yu H et al (2018) A 3D microfluidic model to recapitulate cancer cell migration and invasion. Bioengineering 5(2):29

    Article  Google Scholar 

  13. Prodanov L, Jindal R, Bale SS et al (2016) Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol. Bioengineering 113(1):241–246

    CAS  Google Scholar 

  14. Lanz HL, Saleh A, Kramer B et al (2017) Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17(1):709

    Article  Google Scholar 

  15. Bergström G, Nilsson K, Mandenius CF et al (2014) Macroporous microcarriers for introducing cells into a microfluidic chip. Lab Chip 14(18):3502–3504

    Article  Google Scholar 

  16. Urich E, Patsch C, Aigner S et al (2013) Multicellular self-assembled spheroidal model of the blood brain barrier. Sci Rep 3:1500

    Article  Google Scholar 

  17. Bell CC, Hendriks DFG, Moro SML et al (2016) Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6:25187

    Article  CAS  Google Scholar 

  18. Bergstrom G, Christoffersson J, Schwanke K et al (2015) Stem cell derived in vivo-like human cardiac bodies in a microfluidic device for toxicity testing by beating frequency imaging. Lab Chip 15(15):3242–3249

    Article  Google Scholar 

  19. Christoffersson J, Bergström G, Schwanke K et al (2016) A microfluidic bioreactor for toxicity testing of stem cell derived 3D cardiac bodies. In: Turksen K (ed) Bioreactors in stem cell biology: methods and protocols. Springer Verlag, London, pp 159–168

    Chapter  Google Scholar 

  20. Lin R-Z, Chang H-Y (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3(9–10):1172–1184

    Article  CAS  Google Scholar 

  21. Wrzesinski K, Fey JS (2018) Metabolic reprogramming and the recovery of physiological functionality in 3D cultures in micro-bioreactors. Bioengineering 5(1):22

    Article  Google Scholar 

  22. Materne EM, Tonevitsky AG, Marx U (2013) Chip-based liver equivalents for toxicity testing-organotypicalness versus cost-efficient high throughput. Lab Chip 13(18):3481–3495

    Article  CAS  Google Scholar 

  23. Oinonen T, Lindros OK (1998) Zonation of hepatic cytochrome P-450 expression and regulation. Biochem J 329(1):17–35

    Article  CAS  Google Scholar 

  24. Frimat J-P, Sisnaiske J, Subbiah S et al (2010) The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab Chip 10(6):701–709

    Article  CAS  Google Scholar 

  25. van der Meer AD, Vermeul K, Poot AA et al (2009) A microfluidic wound-healing assay for quantifying endothelial cell migration. Am J Phys Heart Circ Phys 298(2):H719–H725

    Google Scholar 

  26. Christoffersson J, Meier F, Kempf H et al (2018) A cardiac cell outgrowth assay for evaluating drug compounds using a cardiac spheroid-on-a-chip device. Bioengineering 5(2):36

    Article  Google Scholar 

  27. Halloin C, Coffee M, Manstein F, Zweigerdt R, Production of cardiomyocytes from human pluripotent stem cells by bioreactor technologies, Chapter 5 in Cell-Based Assays Using iPSCs for Drug Development and Testing, Methods in Molecular Biology, vol. 1994, Springer Nature 2019

    Google Scholar 

  28. Kempf H, Olmer R, Kropp C et al (2014) Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports 3(6):1132–1146

    Article  CAS  Google Scholar 

  29. Kempf H, Kropp C, Olmer R et al (2015) Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nature Protocol 10(9):1345–1361

    Article  CAS  Google Scholar 

  30. Kempf H, Olmer R, Haase A et al (2016) Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun 7:13602

    Article  CAS  Google Scholar 

  31. Christoffersson J, Mandenius C-F (2018) Fabrication of a microfluidic cell culture device using photolithographic and soft lithographic techniques. this volume:xxx–xxx

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under (grant no. 115439), resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies. This publication reflects only the author’s views, and neither the IMI JU nor EFPIA nor the European Commission is liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Fredrik Mandenius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Christoffersson, J. et al. (2019). Evaluating the Effect of Drug Compounds on Cardiac Spheroids Using the Cardiac Cell Outgrowth Assay. In: Mandenius, CF., Ross, J. (eds) Cell-Based Assays Using iPSCs for Drug Development and Testing. Methods in Molecular Biology, vol 1994. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9477-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9477-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9476-2

  • Online ISBN: 978-1-4939-9477-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics