The Photoconvertible Fluorescent Protein Dendra2 Tag as a Tool to Investigate Intracellular Protein Dynamics

  • Alexandra Lešková
  • Zuzana Kusá
  • Mária Labajová
  • Miroslav Krausko
  • Ján JásikEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1992)


Fluorescence proteins changing spectral properties after exposure to light with a specific wavelength have recently become outstanding aids in the study of intracellular protein dynamics. Herein we show using Arabidopsis SYNAPTOTAGMIN 1 as a model protein that the Dendra2 green to red photoconvertible protein tag in combination with confocal scanning laser microscopy is a useful tool to study membrane protein intracellular dynamics.

Key words

Photoconvertible fluorescence proteins Dendra2 Photoactivated localization microscopy Arabidopsis SYT1 



This work has been supported by the Slovak Research and Development Agency (grant no. APVV-16-0398). J.J. thanks also the Alexander von Humboldt Foundation for supporting his renewed research stay at MPIPZ, Cologne.


  1. 1.
    Kremers GJ, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW (2011) Fluorescent proteins at a glance. J Cell Sci 124:157–160CrossRefGoogle Scholar
  2. 2.
    Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A et al (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42:111–129CrossRefGoogle Scholar
  3. 3.
    Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Röcker C et al (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101:15905–15910CrossRefGoogle Scholar
  4. 4.
    Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465CrossRefGoogle Scholar
  5. 5.
    Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M et al (2013) A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. Mol Plant 6:1518–1530CrossRefGoogle Scholar
  6. 6.
    Griffiths N, Jaipargas EA, Wozny MR, Barton KA, Mathur N et al (2016) Photo-convertible fluorescent proteins as tools for fresh insights on subcellular interactions in plants. J Microsc 263:148–157CrossRefGoogle Scholar
  7. 7.
    Arimura SI, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci U S A 101:7805–7808CrossRefGoogle Scholar
  8. 8.
    Watanabe W, Shimada T, Matsunaga S, Kurihara D, Fukui K et al (2007) Single-organelle tracking by two-photon conversion. Opt Express 15:2490–2498CrossRefGoogle Scholar
  9. 9.
    Brown SC, Bolte S, Gaudin M, Pereira C, Marion J et al (2010) Exploring plant endomembrane dynamics using the photoconvertible protein Kaede. Plant J 63:696–711CrossRefGoogle Scholar
  10. 10.
    Wolf H, Barisas BG, Dietz KJ, Seidel T (2013) Kaede for detection of protein oligomerization. Mol Plant 6:1453–1462CrossRefGoogle Scholar
  11. 11.
    Cho M, Lee ZW, Cho HT (2012) ATP-binding cassette B4, an auxin-efflux transporter, stably associates with the plasma membrane and shows distinctive intracellular trafficking from that of PIN-FORMEDs. Plant Physiol 159:642–654CrossRefGoogle Scholar
  12. 12.
    Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J et al (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527CrossRefGoogle Scholar
  13. 13.
    Mathur J, Radhamony R, Sinclair AM, Donoso A, Dunn N et al (2010) mEosFP based green to red photoconvertible subcellular probes for plants. Plant Physiol 154:1573–1587CrossRefGoogle Scholar
  14. 14.
    Schattat MH, Griffiths S, Mathur N, Barton K, Wozny MR et al (2012) Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell 24:1465–1477CrossRefGoogle Scholar
  15. 15.
    Hanson MR, Sattarzadeh A (2013) Trafficking of proteins through plastid stromules. Plant Cell 25:2774–2782CrossRefGoogle Scholar
  16. 16.
    Scott I, Sparkes IA, Logan DC (2007) The missing link: inter-organellar connections in mitochondria and peroxisomes? Trends Plant Sci 12:380–381CrossRefGoogle Scholar
  17. 17.
    Sinclair AM, Trobacher CP, Mathur N, Greenwood JS, Mathur J (2009) Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J 59:231–242CrossRefGoogle Scholar
  18. 18.
    Jaipargas EA, Barton KA, Mathur N, Mathur J (2015) Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics. Front Plant Sci 6:783CrossRefGoogle Scholar
  19. 19.
    Schenkel M, Sinclair AM, Johnstone D, Bewley JD, Mathur J (2008) Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos:: FABD-mTn fluorescent fusion protein. Plant Methods 4:21CrossRefGoogle Scholar
  20. 20.
    Wozny M, Schattat MH, Mathur N, Barton K, Mathur J (2011) Colour recovery after photoconversion of H2B: mEosFP allows detection of increased nuclear DNA content in developing plant cells. Plant Physiol 158:95–106CrossRefGoogle Scholar
  21. 21.
    Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X et al (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10:e1001299CrossRefGoogle Scholar
  22. 22.
    Jásik J, Boggetti B, Baluška F, Volkmann D, Gensch T et al (2013) PIN2 turnover in Arabidopsis root epidermal cells explored by the photoconvertible protein Dendra2. PLoS One 8:e61403CrossRefGoogle Scholar
  23. 23.
    Jásik J, Schmelzer E (2014) Internalized and newly synthesized Arabidopsis PIN-FORMED2 pass through brefeldin A compartments: a new insight into intracellular dynamics of the protein by using the photoconvertible fluorescence protein Dendra2 as a tag. Mol Plant 7:1578–1581CrossRefGoogle Scholar
  24. 24.
    Jásik J, Bokor B, Stuchlík S, Mičieta K, Turňa J et al (2016) Effects of auxins on PIN-FORMED2 (PIN2) dynamics are not mediated by inhibiting PIN2 endocytosis. Plant Physiol 172:1019–1031PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kitagawa M, Fujita T (2013) Quantitative imaging of directional transport through plasmodesmata in moss protonemata via single-cell photoconversion of Dendra2. J Plant Res 126:577–585CrossRefGoogle Scholar
  26. 26.
    Wu S, Koizumi K, MacRae-Crerar A, Gallagher KL (2011) Assessing the utility of photoswitchable fluorescent proteins for tracking intercellular protein movement in the Arabidopsis root. PLoS One 6:e27536CrossRefGoogle Scholar
  27. 27.
    Rausin G, Tillemans V, Stankovic N, Hanikenne M, Motte P (2010) Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains. Plant Physiol 153:273–284CrossRefGoogle Scholar
  28. 28.
    Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A et al (2011) Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr Biol 21:497–502CrossRefGoogle Scholar
  29. 29.
    Lummer M, Humpert F, Steuwe C, Caesar K, Schüttpelz M et al (2011) Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants. Traffic 12:693–702CrossRefGoogle Scholar
  30. 30.
    Gerlitz N, Gerum R, Sauer N, Stadler R (2018) Photoinducible DRONPA-s: a new tool for investigating cell–cell connectivity. Plant J 94:751–766CrossRefGoogle Scholar
  31. 31.
    Wang H, Han S, Siao W, Song C, Xiang Y et al (2015) Arabidopsis synaptotagmin 2 participates in pollen germination and tube growth and is delivered to plasma membrane via conventional secretion. Mol Plant 8:1737–1750CrossRefGoogle Scholar
  32. 32.
    Klementieva NV, Lukyanov KA, Markina NM, Lukyanov SA, Zagaynova EV et al (2016) Green-to red primed conversion of Dendra2 using blue and red lasers. Chem Commun 52:13144–13146CrossRefGoogle Scholar
  33. 33.
    Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R et al (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374–3388CrossRefGoogle Scholar
  34. 34.
    Koncz C, Schell J (1986) The promoter of T L-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396CrossRefGoogle Scholar
  35. 35.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefGoogle Scholar
  36. 36.
    Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2:2024–2032CrossRefGoogle Scholar
  37. 37.
    Adam V, Nienhaus K, Bourgeois D, Nienhaus GU (2009) Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 48:4905–4915CrossRefGoogle Scholar
  38. 38.
    Pakhomov AA, Martynov VI, Orsa AN, Bondarenko AA, Chertkova RV et al (2017) Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor. Biochem Biophys Res Commun 493:1518–1521CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexandra Lešková
    • 1
  • Zuzana Kusá
    • 1
  • Mária Labajová
    • 2
  • Miroslav Krausko
    • 1
  • Ján Jásik
    • 1
    Email author
  1. 1.Plant Science and Biodiversity Center, Institute of BotanySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Plant Science and Biodiversity Center, Institute of Botany of the Czech Academy of SciencesSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations