Skip to main content

Transient Gene Expression as a Tool to Monitor and Manipulate the Levels of Acidic Phospholipids in Plant Cells

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

Anionic phospholipids represent only minor fraction of cell membranes lipids but they are critically important for many membrane-related processes, including membrane identity, charge, shape, the generation of second messengers, and the recruitment of peripheral proteins. The main anionic phospholipids of the plasma membrane are phosphoinositides phosphatidylinositol 4-phosphate (PI4P), phosphatidylinositol 4,5-bisphosphate (PI4,5P2), phosphatidylserine (PS), and phosphatidic acid (PA). Recent insights in the understanding of the nature of protein–phospholipid interactions enabled the design of genetically encoded fluorescent molecular probes that can interact with various phospholipids in a specific manner allowing their imaging in live cells. Here, we describe the use of transiently transformed plant cells to study phospholipid-dependent membrane recruitment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernardino de la Serna J, Schütz GJ, Eggeling C, Cebecauer M (2016) There is no simple model of the plasma membrane organization. Front Cell Dev Biol 4:106

    Article  Google Scholar 

  2. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  Google Scholar 

  3. Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838:1451–1466

    Article  CAS  Google Scholar 

  4. Devaiah SP, Roth MR, Baughman E, Li M, Tamura P et al (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67:1907–1924

    Article  CAS  Google Scholar 

  5. Mosblech A, König S, Stenzel I, Grzeganek P, Feussner I et al (2008) Phosphoinositide and inositolpolyphosphate signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol Plant 1:249–261

    Article  CAS  Google Scholar 

  6. Furt F, Simon-Plas F, Mongrand S (2011) Lipids of the plant plasma membrane. In: Murphy AS, Schulz B, Peer W (eds) The plant plasma membrane. Springer, Berlin Heidelberg, pp 3–30

    Chapter  Google Scholar 

  7. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137

    Article  CAS  Google Scholar 

  8. Kay JG, Grinstein S (2013) Phosphatidylserine-mediated cellular signaling. In: Capelluto D (ed) Lipid-mediated protein signaling. Springer, Dordrecht, pp 177–193

    Chapter  Google Scholar 

  9. Sekereš J, Pleskot R, Pejchar P, Žárský V, Potocký M (2015) The song of lipids and proteins: dynamic lipid-protein interfaces in the regulation of plant cell polarity at different scales. J Exp Bot 66:1587–1598

    Article  Google Scholar 

  10. Noack LC, Jaillais Y (2017) Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. Curr Opin Plant Biol 40:22–33

    Article  CAS  Google Scholar 

  11. Pokotylo I, Kravets V, Martinec J, Ruelland E (2018) The phosphatidic acid paradox: too many actions for one molecule class? Lessons from plants. Prog Lipid Res 71:43–53

    Article  CAS  Google Scholar 

  12. Tanguy E, Kassas N, Vitale N (2018) Protein–phospholipid interaction motifs: a focus on phosphatidic acid. Biomolecules 8:20

    Article  Google Scholar 

  13. Vermeer JEM, Munnik T (2010) Imaging lipids in living plants. In: Munnik T (ed) Lipid signaling in plants. Springer, Berlin Heidelberg, pp 185–199

    Chapter  Google Scholar 

  14. Platre MP, Jaillais Y (2016) Guidelines for the use of protein domains in acidic phospholipid imaging. In: Waugh MG (ed) Lipid signaling protocols. Springer, New York, pp 175–194

    Chapter  Google Scholar 

  15. Várnai P, Gulyás G, Tóth DJ, Sohn M, Sengupta N et al (2017) Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 64:72–82

    Article  Google Scholar 

  16. Vermeer JEM, Thole JM, Goedhart J, Nielsen E, Munnik T et al (2009) Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J 57:356–372

    Article  CAS  Google Scholar 

  17. Simon MLA, Platre MP, Assil S, van Wijk R, Chen WY et al (2014) A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J 77:322–337

    Article  CAS  Google Scholar 

  18. Simon MLA, Platre MP, Marquès-Bueno MM, Armengot L, Stanislas T et al (2016) A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nature Plants 2:16089

    Article  CAS  Google Scholar 

  19. Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K et al (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  CAS  Google Scholar 

  20. van Leeuwen W, Vermeer JEM, Gadella TWJ, Munnik T (2007) Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52:1014–1026

    Article  Google Scholar 

  21. Potocký M, Pleskot R, Pejchar P, Vitale N, Kost B et al (2014) Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol 203:483–494

    Article  Google Scholar 

  22. Platre MP, Noack LC, Doumane M, Bayle V, Simon MLA et al (2018) A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev Cell 45:465–480

    Article  CAS  Google Scholar 

  23. Heilmann I (2016) Phosphoinositide signaling in plant development. Development 143:2044–2055

    Article  CAS  Google Scholar 

  24. Yao HY, Xue HW (2018) Phosphatidic acid (PA) plays key roles regulating plant development and stress responses. J Integr Plant Biol 60(9):851–863

    Article  CAS  Google Scholar 

  25. Idevall-Hagren O, De Camilli P (2015) Detection and manipulation of phosphoinositides. Biochim Biophys Acta 1851:736–745

    Article  CAS  Google Scholar 

  26. Pu M, Orr A, Redfield AG, Roberts MF (2010) Defining specific lipid binding sites for a peripheral membrane protein in situ using subtesla field-cycling NMR. J Biol Chem 285:26916–26922

    Article  CAS  Google Scholar 

  27. Pleskot R, Cwiklik L, Jungwirth P, Žárský V, Potocký M (2015) Membrane targeting of the yeast exocyst complex. Biochim Biophys Acta 1848:1481–1489

    Article  CAS  Google Scholar 

  28. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  30. Sekereš J, Pejchar P, Šantrůček J, Vukašinović N, Žárský V et al (2017) Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. Plant Physiol 173:1659–1675

    Article  Google Scholar 

  31. Gronnier J, Crowet JM, Habenstein B, Nasir MN, Bayle V et al (2017) Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. elife 6:e26404

    Article  Google Scholar 

Download references

Acknowledgments

Research in the Prague lab is supported by the Czech Science Foundation (grants no. 17-27477S, 18-18290J and 19-21758S) and by the Ministry of Education Youth and Sport of the Czech Republic (project no. NPUI LO1417). Y.J. is funded by ERC no. 3363360-APPL under FP/2007-2013, and L.C.N is funded by a fellowship from the French Ministry of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Potocký .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Noack, L.C., Pejchar, P., Sekereš, J., Jaillais, Y., Potocký, M. (2019). Transient Gene Expression as a Tool to Monitor and Manipulate the Levels of Acidic Phospholipids in Plant Cells. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics