Neuroprotection in Neurodegenerative Disorders

  • Kewal K. Jain
Part of the Springer Protocols Handbooks book series (SPH)


Although the concept of neuroprotection was originally applied to acute neurological conditions, it has been extended to chronic diseases of the brain characterized by as neurodegeneration because some of the basic mechanisms of damage to the CNS are similar in these conditions.


  1. Azarashvili T, Stricker R, Reiser G. The mitochondria permeability transition pore complex in the brain with interacting proteins - promising targets for protection in neurodegenerative diseases. Biol Chem 2010;391:619–29.Google Scholar
  2. Berry DB, Lu D, Geva M, et al. Drug resistance confounding prion therapeutics. Proc Natl Acad Sci U S A 2013;110:E4160–9.CrossRefGoogle Scholar
  3. Bosco DA. Translation dysregulation in neurodegenerative disorders. Proc Natl Acad Sci U S A 2018;115:12842–12844.CrossRefGoogle Scholar
  4. Bowerman M, Beauvais A, Anderson CL, Kothary R. Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Hum Mol Genet 2010;19:1468–78.CrossRefGoogle Scholar
  5. Broce I, Karch CM, Wen N, et al. Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Med 2018;15: e1002487.CrossRefGoogle Scholar
  6. Chambraud B, Sardin E, Giustiniani J, et al. A role for FKBP52 in Tau protein function. PNAS 2010;107:2658–63.CrossRefGoogle Scholar
  7. Cherukuri A, Cahan H, de Hart G, et al. Immunogenicity to cerliponase alfa, an enzyme replacement therapy for patients with CLN2 disease: results from a phase 1/2 study. Clin Immunol 2018;197:68–76.CrossRefGoogle Scholar
  8. Darbar IA, Plaggert PG, Zanoteli E, et al. Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid. BMC Neurology 2011;11:36CrossRefGoogle Scholar
  9. Devos D, Moreau C, Devedjian JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 2014;21:195–210.CrossRefGoogle Scholar
  10. Farooq F, Molina FA, Hadwen J, et al. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway. J Clin Invest 2011;121:3042–50.CrossRefGoogle Scholar
  11. Ferrari M, Jain IH, Goldberger O, et al. Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. Proc Natl Acad Sci U S A 2017;114:E4241-E4250.CrossRefGoogle Scholar
  12. Gold M, Lorenzl S, Stewart AJ, et al. Critical appraisal of the role of davunetide in the treatment of progressive supranuclear palsy. Neuropsychiatr Dis Treat 2012;8:85–93.PubMedPubMedCentralGoogle Scholar
  13. Hardy J, Revesz T. The Spread of Neurodegenerative Disease. NEJM 2012;366:2126–28.CrossRefGoogle Scholar
  14. Hashizume A, Katsuno M, Suzuki K, et al. Long-term treatment with leuprorelin for spinal and bulbar muscular atrophy: natural history-controlled study. J Neurol Neurosurg Psychiatry 2017;88:1026–32.CrossRefGoogle Scholar
  15. Hoy SM. Nusinersen: First Global Approval. Drugs 2017;77:473–479.CrossRefGoogle Scholar
  16. Jang H, Boltz D, Sturm-Ramirez K, et al. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. PNAS 2009;106:14063–8.CrossRefGoogle Scholar
  17. Kalani K, Yan SF, Yan SS. Mitochondrial permeability transition pore: a potential drug target for neurodegeneration. Drug Discov Today 2018;23:1983–9.CrossRefGoogle Scholar
  18. Kamelgarn M, Chen J, Kuang L, et al. ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay. Proc Natl Acad Sci U S A 2018;115:E11904-E11913.CrossRefGoogle Scholar
  19. Karapetyan YE, Sferrazza GF, Zhou M, et al. Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. Proc Natl Acad Sci U S A 2013;110:7044–9.CrossRefGoogle Scholar
  20. Keller A, Nuvolone M, Abakumova I, et al. Prion pathogenesis is unaltered in a mouse strain with a permeable blood-brain barrier. PLoS Pathog 2019;14: e1007424.CrossRefGoogle Scholar
  21. Kim C, Yun N, Lee J, et al. Phosphorylation of CHIP at Ser20 by Cdk5 promotes tAIF-mediated neuronal death. Cell Death Differ 2016;23:333–46.CrossRefGoogle Scholar
  22. Klawe C, Maschke M. Flupirtine: pharmacology and clinical applications of a nonopioid analgesic and potentially neuroprotective compound. Expert Opin Pharmacother 2009;10:1495–500.CrossRefGoogle Scholar
  23. Kvam E, Nannenga BL, Wang MS, et al Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PLoS One 2009;4(5):e5727.CrossRefGoogle Scholar
  24. Kwong LK, Uryu K, Trojanowski JQ, et al. TDP-43 proteinopathies: neurodegenerative protein misfolding diseases without amyloidosis. Neurosignals 2008;16:41–51.CrossRefGoogle Scholar
  25. Lauterbach EC, Victoroff J, Coburn KL, et al. Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data. J Neuropsychiatry Clin Neurosci 2010;22:8–18.CrossRefGoogle Scholar
  26. Liu L, Drouet V, Wu JW, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One. 2012;7:e31302.CrossRefGoogle Scholar
  27. Lunke S, El-Osta A. Applicability of histone deacetylase inhibition for the treatment of spinal muscular atrophy. Neurotherapeutics 2013;10:677–87.CrossRefGoogle Scholar
  28. Lutz CM, Kariya S, Patruni S, et al. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest 2011;121:3029–41.CrossRefGoogle Scholar
  29. Markham A. Cerliponase Alfa: First Global Approval. Drugs 2017;77:1247–1249.PubMedGoogle Scholar
  30. Mendell JR, Al-Zaidy S, Shell R, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med 2017;377:1713–22.CrossRefGoogle Scholar
  31. Milioto C, Malena A, Maino E, et al. Beta-agonist stimulation ameliorates the phenotype of spinal and bulbar muscular atrophy mice and patient-derived myotubes. Sci Rep 2017;7:41046.CrossRefGoogle Scholar
  32. Nazor Friberg KN, Hung G, Wancewicz E, et al. Intracerebral infusion of antisense oligonucleotides into prion-infected mice. Mol Ther Nucleic Acids 2012;1:e9.CrossRefGoogle Scholar
  33. Neumann M, Tolnay M, Mackenzie IR. The molecular basis of frontotemporal dementia. Expert Rev Mol Med 2009;11:e23.CrossRefGoogle Scholar
  34. Obolensky A, Berenshtein E, Lederman M, et al. Zinc-desferrioxamine attenuates retinal degeneration in the rd10 mouse model of retinitis pigmentosa. Free Radic Biol Med 2011;51:1482–91.CrossRefGoogle Scholar
  35. Ohlen SB, Russell ML, Brownstein MJ, Lefcort F. BGP-15 prevents the death of neurons in a mouse model of familial dysautonomia. Proc Natl Acad Sci U S A 2017;114:5035–40.CrossRefGoogle Scholar
  36. Okamoto S, Kang YJ, Brechtel CW, et al. HIV/gp120 Decreases Adult Neural Progenitor Cell Proliferation via Checkpoint Kinase-Mediated Cell-Cycle Withdrawal and G1 Arrest. Cell Stem Cell 2007;1:230–236.CrossRefGoogle Scholar
  37. Ono K, Mochizuki H, Ikeda T, et al. Effect of melatonin on α-synuclein self-assembly and cytotoxicity. Neurobiol Aging 2012;33:2172–85.CrossRefGoogle Scholar
  38. Otto-Duessel M, Tew BY, Vonderfecht S, et al. Identification of neuron selective androgen receptor inhibitors. World J Biol Chem 2017;8:138–50.CrossRefGoogle Scholar
  39. Palazzolo I, Stack C, Kong L, et al. Overexpression of IGF-1 in Muscle Attenuates Disease in a Mouse Model of Spinal and Bulbar Muscular Atrophy. Neuron 2009;63:1–13.CrossRefGoogle Scholar
  40. Park Y, Hoang QQ. Combating Parkinson’s disease-associated toxicity by modulating proteostasis. Proc Natl Acad Sci U S A 2017;114:803–804.CrossRefGoogle Scholar
  41. Patel VP, Chu CT. Nuclear transport, oxidative stress, and neurodegeneration. Int J Clin Exp Pathol 2011;4:215–29.PubMedPubMedCentralGoogle Scholar
  42. Properzi F, Ferroni E, Poleggi A, Vinci R. The regulation of exosome function in the CNS: implications for neurodegeneration. Swiss Med Wkly 2015;145:w14204.PubMedGoogle Scholar
  43. Prusiner SB. Shattuck lecture--neurodegenerative diseases and prions. N Engl J Med 2001;344:1516–26.CrossRefGoogle Scholar
  44. Roettger Y, Du Y, Bacher M, Zerr I, Dodel R, Bach JP. Immunotherapy in prion disease. Nat Rev Neurol 2013;9:98–105.CrossRefGoogle Scholar
  45. Schulz A, Ajayi T, Specchio N, et al. Cerliponase Alfa for CLN2Study of Intraventricular Cerliponase Alfa for CLN2 Disease. N Engl J Med 2018;378:1898–1907.CrossRefGoogle Scholar
  46. Sen A, Dimlich DN, Guruharsha KG, et al. Genetic circuitry of Survival motor neuron, the gene underlying spinal muscular atrophy. Proc Natl Acad Sci U S A 2013;110:E2371–80.CrossRefGoogle Scholar
  47. Simões-Pires C, Zwick V, Nurisso A, Schenker E, et al. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol Neurodegener 2013;8:7.CrossRefGoogle Scholar
  48. Spires-Jones TL, Fox LM, Rozkalne A, et al. Inhibition of Sirtuin 2 with Sulfobenzoic Acid Derivative AK1 is Non-Toxic and Potentially Neuroprotective in a Mouse Model of Frontotemporal Dementia. Front Pharmacol 2012;3:42.CrossRefGoogle Scholar
  49. Stewart LA, Rydzewska LH, Keogh GF, Knight RS. Systematic review of therapeutic interventions in human prion disease. Neurology 2008;70:1272–81.CrossRefGoogle Scholar
  50. Tamaki SJ, Jacobs Y, Dohse M, et al. Neuroprotection of Host Cells by Human Central Nervous System Stem Cells in a Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis. Cell Stem Cell 2009;5:310–9.CrossRefGoogle Scholar
  51. Tanaka K, Matsuda N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim Biophys Acta 2014;1843:197–204.CrossRefGoogle Scholar
  52. Tsou AY, Friedman LS, Wilson RB, Lynch DR. Pharmacotherapy for Friedreich ataxia. CNS Drugs 2009;23:213–23.CrossRefGoogle Scholar
  53. Verdin E. NAD+ in aging, metabolism, and neurodegeneration. Science 2015;350:1208–13.CrossRefGoogle Scholar
  54. Villar-Piqué A, da Fonseca TL, Sant’Anna R, et al. Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity. PNAS 2016;113:E6506–E6515.CrossRefGoogle Scholar
  55. Vuillemenot BR, Kennedy D, Cooper JD, et al. Nonclinical evaluation of CNS-administered TPP1 enzyme replacement in canine CLN2 neuronal ceroid lipofuscinosis. Mol Genet Metab 2015;114:281–293.CrossRefGoogle Scholar
  56. Worgall S, Sondhi D, Hackett NR, et al. Treatment of Late Infantile Neuronal Ceroid Lipofuscinosis by CNS Administration of a Serotype 2 Adeno-Associated Virus Expressing CLN2 cDNA. Hum Gene Ther 2008;19:463–74.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kewal K. Jain
    • 1
  1. 1.Jain PharmaBiotechBaselSwitzerland

Personalised recommendations