Advertisement

Surface Barcoding of Live PBMC for Multiplexed Mass Cytometry

  • Axel Ronald Schulz
  • Henrik E. MeiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1989)

Abstract

Sample barcoding is a powerful method for harmonizing mass cytometry data. By assigning a unique combination of barcode labels to each cell sample, a set of individual samples can be pooled and further processed and acquired as a large, single sample. For assays that require uncompromised profiling of cell-surface markers on live cells, barcoding by metal-labeled antibodies targeting cell-surface epitopes is the barcoding approach of choice. Here we provide an optimized and validated protocol for cell-surface barcoding of ten PBMC samples with palladium-labeled β2-microglobulin (B2M) antibodies used in a 5-choose-2 barcoding scheme, for subsequent immune phenotyping by mass cytometry. We further provide details on the generation of palladium-labeled antibodies utilizing amine-reactive isothiocyanobenzyl-EDTA (ITCB-EDTA) that permits the implementation of antibody-based barcoding not interfering with lanthanide channels typically used for analyte detection in mass cytometry assays.

Key words

Mass cytometry CyTOF Cell-surface sample barcoding Antibody-based sample barcoding Palladium Immune monitoring β2-Microglobulin 

Notes

Acknowledgments

The authors would like to thank all members of the DRFZ mass cytometry group, Michael D. Leipold, PhD, for discussing antibody labeling strategies, Dr. Lars Fransecky for providing leukemia samples, and Dr. Petra Henklein for providing access to the lyophilizer.

References

  1. 1.
    Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696.  https://doi.org/10.1126/science.1198704CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Levine JH, Simonds EF, Bendall SC et al (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162(1):184–197.  https://doi.org/10.1016/j.cell.2015.05.047CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rao DA, Gurish MF, Marshall JL et al (2017) Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542(7639):110–114.  https://doi.org/10.1038/nature20810CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    O’Gorman WE, Hsieh EW, Savig ES et al (2015) Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. J Allergy Clin Immunol 136(5):1326–1336.  https://doi.org/10.1016/j.jaci.2015.04.008CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gaudilliere B, Fragiadakis GK, Bruggner RV et al (2014) Clinical recovery from surgery correlates with single-cell immune signatures. Sci Transl Med 6(255):255ra131.  https://doi.org/10.1126/scitranslmed.3009701CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nair N, Mei HE, Chen SY et al (2015) Mass cytometry as a platform for the discovery of cellular biomarkers to guide effective rheumatic disease therapy. Arthritis Res Ther 17:127.  https://doi.org/10.1186/s13075-015-0644-zCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ermann J, Rao DA, Teslovich NC et al (2015) Immune cell profiling to guide therapeutic decisions in rheumatic diseases. Nat Rev Rheumatol 11(9):541–551.  https://doi.org/10.1038/nrrheum.2015.71CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3(5):361–368.  https://doi.org/10.1038/nmeth872CrossRefPubMedGoogle Scholar
  9. 9.
    Bodenmiller B, Zunder ER, Finck R et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30(9):858–867.  https://doi.org/10.1038/nbt.2317CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zivanovic N, Jacobs A, Bodenmiller B (2014) A practical guide to multiplexed mass cytometry. Curr Top Microbiol Immunol 377:95–109.  https://doi.org/10.1007/82_2013_335CrossRefPubMedGoogle Scholar
  11. 11.
    Zunder ER, Finck R, Behbehani GK et al (2015) Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat Protoc 10(2):316–333.  https://doi.org/10.1038/nprot.2015.020CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    McCarthy RL, Mak DH, Burks JK et al (2017) Rapid monoisotopic cisplatin based barcoding for multiplexed mass cytometry. Sci Rep 7(1):3779.  https://doi.org/10.1038/s41598-017-03610-2CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Catena R, Ozcan A, Zivanovic N et al (2016) Enhanced multiplexing in mass cytometry using osmium and ruthenium tetroxide species. Cytometry A 89(5):491–497.  https://doi.org/10.1002/cyto.a.22848CrossRefPubMedGoogle Scholar
  14. 14.
    Behbehani GK, Thom C, Zunder ER et al (2014) Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining. Cytometry A 85(12):1011–1019.  https://doi.org/10.1002/cyto.a.22573CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dzangue-Tchoupou G, Corneau A, Blanc C et al (2018) Analysis of cell surface and intranuclear markers on non-stimulated human PBMC using mass cytometry. PLoS One 13(3):e0194593.  https://doi.org/10.1371/journal.pone.0194593CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gaudilliere B, Ganio EA, Tingle M et al (2015) Implementing mass cytometry at the bedside to study the immunological basis of human diseases: distinctive immune features in patients with a history of term or preterm birth. Cytometry A 87(9):817–829.  https://doi.org/10.1002/cyto.a.22720CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mei HE, Leipold MD, Schulz AR et al (2015) Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J Immunol 194(4):2022–2031.  https://doi.org/10.4049/jimmunol.1402661CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mei HE, Leipold MD, Maecker HT (2016) Platinum-conjugated antibodies for application in mass cytometry. Cytometry A 89(3):292–300.  https://doi.org/10.1002/cyto.a.22778CrossRefPubMedGoogle Scholar
  19. 19.
    Lavin Y, Kobayashi S, Leader A et al (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169(4):750–765.e717.  https://doi.org/10.1016/j.cell.2017.04.014CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mrdjen D, Pavlovic A, Hartmann FJ et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(2):380–395.e386.  https://doi.org/10.1016/j.immuni.2018.01.011CrossRefPubMedGoogle Scholar
  21. 21.
    Lai L, Ong R, Li J et al (2015) A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF). Cytometry A 87(4):369–374.  https://doi.org/10.1002/cyto.a.22640CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hartmann FJ, Bernard-Valnet R, Queriault C et al (2016) High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J Exp Med 213(12):2621–2633.  https://doi.org/10.1084/jem.20160897CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lawson DA, Bhakta NR, Kessenbrock K et al (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526(7571):131–135.  https://doi.org/10.1038/nature15260CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hartmann FJ, Simonds EF, Bendall SC A Universal Live Cell Barcoding-Platform for Multiplexed Human Single Cell Analysis. PMID 30018331Google Scholar
  25. 25.
    Medina F, Segundo C, Campos-Caro A et al (2002) The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 99(6):2154–2161CrossRefGoogle Scholar
  26. 26.
    Cossarizza A, Chang HD, Radbruch A et al (2017) Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 47(10):1584–1797.  https://doi.org/10.1002/eji.201646632CrossRefPubMedGoogle Scholar
  27. 27.
    Finck R, Simonds EF, Jager A et al (2013) Normalization of mass cytometry data with bead standards. Cytometry A 83(5):483–494.  https://doi.org/10.1002/cyto.a.22271CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Biesen R, Demir C, Barkhudarova F et al (2008) Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum 58(4):1136–1145.  https://doi.org/10.1002/art.23404CrossRefPubMedGoogle Scholar
  29. 29.
    Rose T, Grutzkau A, Hirseland H et al (2013) IFNalpha and its response proteins, IP-10 and SIGLEC-1, are biomarkers of disease activity in systemic lupus erythematosus. Ann Rheum Dis 72(10):1639–1645.  https://doi.org/10.1136/annrheumdis-2012-201586CrossRefPubMedGoogle Scholar
  30. 30.
    Schulz AR, Stanislawiak S, Baumgart S et al (2017) Silver nanoparticles for the detection of cell surface antigens in mass cytometry. Cytometry A 91(1):25–33.  https://doi.org/10.1002/cyto.a.22904CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mass Cytometry LabGerman Rheumatism Research Center (DRFZ), A Leibniz InstituteBerlinGermany

Personalised recommendations