Skip to main content

Acquisition, Processing, and Quality Control of Mass Cytometry Data

  • Protocol
  • First Online:
Mass Cytometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1989))

Abstract

Mass cytometry uniquely combines the principles of mass spectrometry and flow cytometry for high dimensional profiling of immune cells at a single cell level. Using isotopically conjugated antibodies, mass cytometry overcomes the limitations of spectral overlap associated with flow cytometry and allows for deeper single cell characterization of complex biospecimens using more cellular markers. However, the nature of mass spectrometry-based single cell measurements requires specific considerations in acquiring and processing data. This chapter provides an overview of how to optimally acquire mass cytometry data and how to process this data for subsequent analysis and characterization of cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fluidigm | CyTOF 2 User Guide. https://www.fluidigm.com/search?query=user%20guide. Accessed 20 May 2018

  2. Takahashi C, Au-Yeung A, Fuh F et al (2017) Mass cytometry panel optimization through the designed distribution of signal interference. Cytometry A 91:39–47. https://doi.org/10.1002/cyto.a.22977

    Article  CAS  PubMed  Google Scholar 

  3. Finck R, Simonds EF, Jager A et al (2013) Normalization of mass cytometry data with bead standards. Cytometry A 83:483–494. https://doi.org/10.1002/cyto.a.22271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bagwell B Fluidigm | 6th Annual Mass Cytometry Summit Presentations. http://cn.fluidigm.com/articles/mass-cyto-summit-videos. Accessed 22 May 2018

  5. Zunder ER, Finck R, Behbehani GK et al (2015) Palladium-based mass-tag cell barcoding with a doublet-filtering scheme and single cell deconvolution algorithm. Nat Protoc 10:316–333. https://doi.org/10.1038/nprot.2015.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mei HE, Leipold MD, Schulz AR et al (2015) Barcoding of live human PBMC for multiplexed mass cytometry. J Immunol 194:2022–2031. https://doi.org/10.4049/jimmunol.1402661

    Article  CAS  PubMed  Google Scholar 

  7. Fread KI, Strickland WD, Nolan GP et al (2017) An updated debarcoding tool for mass cytometry with cell type-specific and cell sample-specific stringency adjustment. Pac Symp Biocomput 22:588–598. https://doi.org/10.1142/9789813207813_0054

    Article  PubMed  Google Scholar 

  8. Ornatsky OI, Lou X, Nitz M et al (2008) Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal Chem 80:2539–2547. https://doi.org/10.1021/ac702128m

    Article  CAS  PubMed  Google Scholar 

  9. Fienberg HG, Simonds EF, Fantl WJ et al (2012) A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81:467–475. https://doi.org/10.1002/cyto.a.22067

    Article  CAS  PubMed  Google Scholar 

  10. Amir E-AD, Guo XV, Mayovska O et al (2018) Average overlap frequency: a simple metric to evaluate staining quality and community identification in high dimensional mass cytometry experiments. J Immunol Methods 453:20–29. https://doi.org/10.1016/j.jim.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  11. Chevrier S, Crowell HL, Zanotelli VRT et al (2018) Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst 6(5):612–620.e5. https://doi.org/10.1016/j.cels.2018.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jensen IM, Ellegaard J, Hokland P (1993) Differences in relative DNA content between human peripheral blood and bone marrow subpopulations—consequences for DNA index calculations. Cytometry 14:936–942. https://doi.org/10.1002/cyto.990140813

    Article  CAS  PubMed  Google Scholar 

  13. Stern AD, Rahman AH, Birtwistle MR (2017) Cell size assays for mass cytometry. Cytometry A 91:14–24. https://doi.org/10.1002/cyto.a.23000

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeeb H. Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, B.H., Rahman, A.H. (2019). Acquisition, Processing, and Quality Control of Mass Cytometry Data. In: McGuire, H., Ashhurst, T. (eds) Mass Cytometry. Methods in Molecular Biology, vol 1989. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9454-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9454-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9453-3

  • Online ISBN: 978-1-4939-9454-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics