Advertisement

Mass Cytometry pp 267-279 | Cite as

Analysis of Mass Cytometry Data

  • Christina B. Pedersen
  • Lars R. OlsenEmail author
Protocol
  • 1.5k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1989)

Abstract

The CyTOF system produces single cell protein expression data similar to that from flow cytometry, but with an increased number of features measured. Traditionally, analysis of these data is carried out using manual gating, but with the increased dimensionality, manual gating becomes a suboptimal analysis strategy in some cases. To address this, a number of data analysis tools for tasks such as clustering, differential abundance analysis, and visualization have been developed and made freely available. We here introduce some of the more popular tools for CyTOF analysis and exemplify their utility in a common analysis workflow.

Key words

Mass cytometry Dimensionality reduction Clustering Differential expression 

References

  1. 1.
    Chester C, Maecker HT (2015) Algorithmic tools for mining high-dimensional cytometry data. J Immunol 195(3):773–779.  https://doi.org/10.4049/jimmunol.1500633CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shekhar K, Brodin P, Davis MM et al (2014) Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc Natl Acad Sci U S A 111(1):202–207.  https://doi.org/10.1073/pnas.1321405111CrossRefPubMedGoogle Scholar
  3. 3.
    Weber LM, Robinson MD (2016) Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89(12):1084–1096.  https://doi.org/10.1002/cyto.a.23030CrossRefPubMedGoogle Scholar
  4. 4.
    van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2585Google Scholar
  5. 5.
    Amir el AD, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552.  https://doi.org/10.1038/nbt.2594CrossRefGoogle Scholar
  6. 6.
    Qiu P, Simonds EF, Bendall SC et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891.  https://doi.org/10.1038/nbt.1991CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Van Gassen S, Callebaut B, Van Helden MJ et al (2015) FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87(7):636–645.  https://doi.org/10.1002/cyto.a.22625CrossRefPubMedGoogle Scholar
  8. 8.
    Levine JH, Simonds EF, Bendall SC et al (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162(1):184–197.  https://doi.org/10.1016/j.cell.2015.05.047CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Morbach H, Eichhorn EM, Liese JG et al (2010) Reference values for B cell subpopulations from infancy to adulthood. Clin Exp Immunol 162(2):271–279.  https://doi.org/10.1111/j.1365-2249.2010.04206.xCrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nagel A, Mobs C, Raifer H et al (2014) CD3-positive B cells: a storage-dependent phenomenon. PLoS One 9(10):e110138.  https://doi.org/10.1371/journal.pone.0110138CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bruggner RV, Bodenmiller B, Dill DL et al (2014) Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A 111(26):E2770–E2777.  https://doi.org/10.1073/pnas.1408792111CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121.  https://doi.org/10.1073/pnas.091062498CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Spitzer MH, Carmi Y, Reticker-Flynn NE et al (2017) Systemic immunity is required for effective cancer immunotherapy. Cell 168(3):487–502.e415.  https://doi.org/10.1016/j.cell.2016.12.022CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lun ATL, Richard AC, Marioni JC (2017) Testing for differential abundance in mass cytometry data. Nat Methods 14(7):707–709.  https://doi.org/10.1038/nmeth.4295CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140.  https://doi.org/10.1093/bioinformatics/btp616CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bodenmiller B, Zunder ER, Finck R et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30(9):858–867.  https://doi.org/10.1038/nbt.2317CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bendall SC, Davis KL, Amir el AD et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157(3):714–725.  https://doi.org/10.1016/j.cell.2014.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Setty M, Tadmor MD, Reich-Zeliger S et al (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34(6):637–645.  https://doi.org/10.1038/nbt.3569CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Health TechnologyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations